예제 #1
0
 def test_make_knn(self, model_type, n_neighbors_val, algorithm_val,
                   expected):
     model_params = {}
     model_params['Number of Neighbors'] = n_neighbors_val
     model_params['Algorithm Type'] = algorithm_val
     model = predict.make_model(model_type, model_params)
     self.assertEqual(expected, f'{model}')
예제 #2
0
 def test_make_rf(self, model_type, n_estimators_val, max_depth_val,
                  expected):
     model_params = {}
     model_params['Number of Estimators'] = n_estimators_val
     model_params['Max Depth'] = max_depth_val
     model = predict.make_model(model_type, model_params)
     self.assertEqual(expected, f'{model}')
예제 #3
0
 def test_make_nn(self, model_type, solver_val, activation_val,
                  max_iter_val, expected):
     model_params = {}
     model_params['Solver Type'] = solver_val
     model_params['Activation Function Type'] = activation_val
     model_params['Number of Iterations'] = max_iter_val
     model = predict.make_model(model_type, model_params)
     self.assertEqual(expected, f'{model}')
예제 #4
0
    def test_train_svm_model(self, model_type, c_val, kernel, expected):
        # Create new Model
        model_params = {}
        model_params['C Parameter'] = c_val
        model_params['Kernel Type'] = kernel
        model = predict.make_model(model_type, model_params)

        return_str = predict.train_model(model, test_run=True)

        self.assertEqual(expected, return_str)
예제 #5
0
    def test_train_knn_model(self, model_type, n_neighbors_val, algorithm_val,
                             expected):
        # Create new Model
        model_params = {}
        model_params['Number of Neighbors'] = n_neighbors_val
        model_params['Algorithm Type'] = algorithm_val
        model = predict.make_model(model_type, model_params)

        return_str = predict.train_model(model, test_run=True)

        self.assertEqual(expected, return_str)
예제 #6
0
    def test_train_rf_model(self, model_type, n_estimators_val, max_depth_val,
                            expected):
        # Create new Model
        model_params = {}
        model_params['Number of Estimators'] = n_estimators_val
        model_params['Max Depth'] = max_depth_val
        model = predict.make_model(model_type, model_params)

        return_str = predict.train_model(model, test_run=True)

        self.assertEqual(expected, return_str)
예제 #7
0
    def test_train_nn_model(self, model_type, solver_val, activation_val,
                            max_iter_val, expected):
        # Create new Model
        model_params = {}
        model_params['Solver Type'] = solver_val
        model_params['Activation Function Type'] = activation_val
        model_params['Number of Iterations'] = max_iter_val
        model = predict.make_model(model_type, model_params)

        return_str = predict.train_model(model, test_run=True)

        self.assertEqual(expected, return_str)
예제 #8
0
 def test_make_svm(self, model_type, c_val, kernel, expected):
     model_params = {}
     model_params['C Parameter'] = c_val
     model_params['Kernel Type'] = kernel
     model = predict.make_model(model_type, model_params)
     self.assertEqual(expected, f'{model}')