def predict_number(self): all_pts = [] for w in self.canvas.children: if isinstance(w, Line): wpts = np.array(w.points) xs = wpts[::2] ys = wpts[1::2] try: tck, u = interpolate.splprep([xs, ys], s=0) except Exception as e: print('warn', e) continue u_new = np.arange(np.min(u), np.max(u), 0.01) out = interpolate.splev(u_new, tck) all_pts += out img = np.zeros((560+10, 560+10)).astype(np.uint8) polyx = np.array(all_pts[::2]).astype(np.int) polyy = np.array(all_pts[1::2]).astype(np.int) R = 10 from itertools import product for xs, ys in zip(polyx, polyy): for x, y in zip(xs, ys): circle = [(x+i, y+j) for (i, j) in product(range(-R, R+1), repeat=2) if i**2+j**2 < R**2] for c in circle: img[c[0], c[1]] = 128 img = imresize(np.rot90(img), (28, 28), interp='bilinear').astype('f')/np.max(img) plt.imshow(img, cmap='gray') plt.show() predict(img)
def predict_number(self): all_pts = [] for w in self.canvas.children: if isinstance(w, Line): wpts = np.array(w.points) xs = wpts[::2] ys = wpts[1::2] try: tck, u = interpolate.splprep([xs, ys], s=0) except Exception as e: print('warn', e) continue u_new = np.arange(np.min(u), np.max(u), 0.01) out = interpolate.splev(u_new, tck) all_pts += out img = np.zeros((560 + 10, 560 + 10)).astype(np.uint8) polyx = np.array(all_pts[::2]).astype(np.int) polyy = np.array(all_pts[1::2]).astype(np.int) R = 10 from itertools import product for xs, ys in zip(polyx, polyy): for x, y in zip(xs, ys): circle = [(x + i, y + j) for (i, j) in product(range(-R, R + 1), repeat=2) if i**2 + j**2 < R**2] for c in circle: img[c[0], c[1]] = 128 img = imresize(np.rot90(img), (28, 28), interp='bilinear').astype('f') / np.max(img) plt.imshow(img, cmap='gray') plt.show() predict(img)
def plotting(itemlist): x = [row[0] for row in itemlist] y = [row[1] for row in itemlist] plt.axis((0, 800, 600, 0)) plt.plot(x, y) plt.savefig('foo1.jpeg') try: testcrop.CropImage() predictor.predict() except IndexError: print("Draw Again!!!") pass plt.close()
def plotting(itemlist, model, session, saver, save_path, hyperparams): x = [row[0] for row in itemlist] y = [row[1] for row in itemlist] plt.axis((0, 800, 600, 0)) plt.plot(x, y) plt.savefig('foo1.jpeg') try: testcrop.CropImage() predictor.predict(model, session, saver, save_path, hyperparams) except IndexError: print("Draw Again!!!") pass plt.close()
def home(): if request.method == 'POST': req = request.form['input'] res = predictor.predict(req) return render_template('submit.html', res=res) else: return render_template('submit.html')
async def handle_docs_photo(message): chat_id = message.chat.id if message.media_group_id is None: # Get user's variables user_name = message.from_user.first_name user_id = message.from_user.id message_id = message.message_id text = WAITING_TEXT % user_name logging.info(f'{user_name, user_id} is knocking to our bot') await bot.send_message(chat_id, text) # Define input photo local path photo_name = './input/photo_%s_%s.jpg' % (user_id, message_id) await message.photo[-1].download( photo_name) # extract photo for further procceses #Photo processing photo_output, text = predict(photo_name) await bot.send_photo(chat_id, photo_output) output_text = [] for i in text: output_text.append(CLASSES_DICT[i]) output_text = '\n\n'.join(output_text) await bot.send_message(chat_id, output_text) else: text = NOT_TARGET_TEXT % user_name await message.reply(text)
def main(): ap = argparse.ArgumentParser( description='This script allow to predict using a pre-trained model') ap.add_argument( 'image_path', default='/home/workspace/paind-project/flowers/test/1/image_06752.jpg') ap.add_argument('checkpoint', default='/home/workspace/paind-project/checkpoint.pth') ap.add_argument('--top_k', dest='top_k', type=int, default=5) ap.add_argument('--category_names', dest='category_names', default='cat_to_name.json') ap.add_argument('--gpu', dest='gpu', action='store_true') args = ap.parse_args() if args.image_path and args.checkpoint: model = checkpoint.load(checkpoint_path=args.checkpoint, gpu=args.gpu) probs, classes = predictor.predict(image_path=args.image_path, model=model, top_k=args.top_k, gpu=args.gpu) with open(args.category_names, 'r') as json_file: cat_to_name = json.load(json_file) labels = list(cat_to_name.values()) classes = [labels[x] for x in classes] for c, p in zip(classes, probs): print(c, p)
def index(): if "file_urls" not in session: session['file_urls'] = [] if "result1" not in session: session['result1'] = [] if "positive" not in session: session['positive'] = [] full_result = session['result1'] full_file = session['file_urls'] full_positive = session['positive'] if request.method == 'POST': file_obj = request.files for f in file_obj: file = request.files.get(f) filename = photos.save(file, name=file.filename) print(filename) result1, file_urls, positive = predict([filename]) full_result = full_result + result1 full_file = full_file + file_urls full_positive = full_positive + positive session['file_urls'] = full_file session['result1'] = full_result session['positive'] = full_positive print('COMPLETE') return "Uploading..." return render_template('index.html')
def scorer(): id_number = None form = NameForm() my_dict = None pred, diff, no_assumptions, assumptions, title = (None, None, None, None, None) if form.validate_on_submit(): id_number = form.id_number.data form.id_number.data = '' pred, diff, no_assumptions, assumptions,title = predict( id_number, dict90,'../pipeline/data/') my_dict = assumptions attrs = ['bed','bath','feet','dog','cat','content', 'getphotos','hasmap','housingtype','lat','long','laundry', 'parking','price','smoking','wheelchair'] return render_template('scorer.html', id_number=id_number, attrs=attrs, my_dict=my_dict,form=form,pred=pred, diff=diff, no_assumptions=no_assumptions,assumptions = assumptions,title=title)
def get_images(): unet = skimage.io.imread( '/Users/arianrahbar/Dropbox/Unet/OutProbs/1_crop.png') mrcnn = cv2.imread('/Users/arianrahbar/Dropbox/Mrcnn/OutLabels/1_crop.png', cv2.IMREAD_GRAYSCALE) unet = pred.predict(unet) return unet, mrcnn
def send(): if request.method == 'POST': url = request.form['url'] predict = predictor.predict(url) return render_template('index.html', predict=predict) return render_template('form.html')
def main(args): normal_class = args.normal_class anomal_classes = args.anomal_classes train_dataset, test_dataset = get_cifar_datasets(normal_class, anomal_classes) print(f"train dataset length: {len(train_dataset)}") print(f"test dataset length: {len(test_dataset)}") device = 'cuda' if torch.cuda.is_available() else 'cpu' print('Using {} device'.format(device)) feature_extractor_version = args.feature_extractor_version # resnet18, 'resnet34', 'resnet50', resnet101, resnet 152 feature_extractor = torch.hub.load('pytorch/vision:v0.9.0', feature_extractor_version, pretrained=True) feature_extractor.to(device) train_set, test_set = get_feature_space(device, feature_extractor, train_dataset, test_dataset) accuracy, tpr, fpr, recall, precision = predict(train_set, test_set) print(f"feature extractor: {feature_extractor_version}") print(f"normal class: {normal_class}") print(f"anomal classes: {anomal_classes}") print(f"accuracy: {accuracy}") print(f"tpr: {tpr}, fpr: {fpr}") print(f"recall: {recall}, precision: {precision}")
def output(): try: json = request.get_json() input_text = json["text"] return predict(input_text) except Exception as e: return f"An error Occured: {e}"
def parse_files(): bucket = gcs_client.get_bucket(BUCKET_NAME) blobs = bucket.list_blobs() Logger.log_writer("Reading bucket files....") for blob in blobs: Logger.log_writer("fileName:" + blob.name) if blob.name == "LTC.csv": Logger.log_writer("Downloading...") blob.download_to_filename(blob.name) Logger.log_writer("Downloaded! Predicting...") last_value, prediction, market_cap = predictor.predict(blob.name) Logger.log_writer( "Created a prediction for:{0} last_value:{1} prediction:{2} marketcap:{3}" .format(blob.name, last_value, prediction, market_cap)) save_prediction(blob.name, last_value, prediction, market_cap)
def onClick(): global message, file, image, img, graph #os.system("script2.py "+ rain.get() +" " + temp.get()+ " " + Population_density.get()) # filo = open("private 2.txt", "r") value = predictor.predict(city.get(), tempe.get(), rain.get(), pop_den.get()) # print(value) ########### MAKING GRAPH ############################### file = "C:\\Users\\acer\\Desktop\\programme_codes\\disease-outbreaks-predictor\\output.png" image = Image.open(file) image = image.resize((1450, 450), Image.ANTIALIAS) img = ImageTk.PhotoImage(image) graph = Label(lowerFrame, image=img) graph.grid(row=0, column=0, columnspan=14, pady=2, padx=40) out1 = str(int(value[0])) message = "The predicted disease count of next year is " + out1 answer["text"] = message temp_contri["text"] = "Current Temperature contribution is: " + str( value[1][0] / (sum(value[1])) * 100)[:5] rain_contri["text"] = "Current Rainfall contribution is: " + str( value[1][1] / (sum(value[1])) * 100)[:5] pop_contri["text"] = "Current Population Density contribution is: " + str( value[1][2] / (sum(value[1])) * 100)[:5]
def detect(): redditURL = request.form['redditpost'] print(redditURL) predicted_flair = str(predict(str(redditURL))) actualflair = str(FlairActual(str(redditURL))) print(predicted_flair, actualflair) return render_template('index.html', predicted_flair = predicted_flair, actualflair = actualflair)
def snapshot(self): ret, frame = self.vid.get_frame() if ret: cv2.imwrite("capture.jpg", cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)) result = predict() print(result) self.selectMusic(result)
def get_tweets_forAgency(agency): for tweet in tweets: text = str(tweet[2]) if "b'RT" not in text: sentiment = TextBlob(text).sentiment.polarity if sentiment <= 0: if agency == predict(text): print(text)
def predict(): sex = request.args["sex"] age = request.args["age"] beh_id = int(request.args["beh_id"]) zip_code = int(request.args["zip_code"]) ans = predictor.predict(sex, age, beh_id, zip_code) return json.dumps(ans)
def main(): graph = Graph() graph.saveGraph() root = Tk() probabilityIncrease, probabilityDecrease = predictor.predict() gui = MyGUI(probabilityIncrease, probabilityDecrease, root) gui.appOpen() root.mainloop()
def save(): filename = "image.png" # global image1 # image1 = PIL.ImageOps.invert(image1) image1.save(filename) predicted = predict() print(predicted) root.title(predicted)
def compare_scans(request): last_two_scans = ImageModel.objects.all().order_by('-id')[:2] print(last_two_scans) file1 = last_two_scans[0].get_name() file2 = last_two_scans[1].get_name() path1 = "/home/prajwala/Videos/oct_analyzer"+settings.MEDIA_URL+file1 path2 = "/home/prajwala/Videos/oct_analyzer"+settings.MEDIA_URL+file2 results_path = "/home/prajwala/Videos/oct_analyzer"+settings.MEDIA_URL+"results/" first,name1 = file1.split("/") first,name2 = file2.split("/") result1 = predict(path1,results_path,name1) result2 = predict(path2,results_path,name2) context = {'file1':file1,'file2':file2} results = {'result1':result1,'result2':result2} plot_hist(result1,result2) return render(request,'uploader/compare.html',{'context':context,'results':results})
def home(): if request.method == 'POST': req = request.json print(req) content = req['text'] res = predictor.predict(content) return jsonify({'generatedText': res}) else: return jsonify({'generatedText': 'hi'})
def get_prediction(calendar, schedule): schedule = get_schedule(schedule) try: weekday = [ep for ep in schedule['event_plans'] if ep['event_plan'] == 'Weekday'][0] min_temp = weekday['min_temp_business_hours'] temp = min_temp if min_temp !="" else "20" except: temp = "20" return predictor.predict(temp)
def predict(): review_text = request.form['review'] cleaned = predictor.clean_str(review_text) rating = predictor.predict(review_text) return render_template('prediction.html', review=review_text, cleaned=cleaned, rating=rating)
def receiver(): if request.method == 'POST': if 'imagefile' in request.files: img = request.files.get('imagefile', '') response = model.predict(img) return {'response': response} elif request.method == 'GET': return redirect('/')
def handle_text(text): # predict prediction = predict(model, text) # save to firebase saveToFirebase(text, prediction) # return return prediction
def sentiment_analyzer(): ''' Receives company name and send back json response ['Positive', 'Negative'] ''' company = request.form['company'] res = predict(company).resp() return jsonify(res)
def partition(remaining, swift, container_name='videos', file_list=None): """ Naive partitioning algorithm for figuring out which workloads can go on each VM. This is done using the predict machine learning algorithm on each of the files using the index file written earlier during the ingest portion of the program. Note: I (the person writing the docstrings) did not create this algorithm, so am unsure exactly of what's going on here. The lines and comments were left mostly as I found them with some minor formatting changes. Contact Ruben Madera (https://github.com/Roastmaster) for more info. """ if not file_list: container_data = [] for data in swift.get_container(container_name)[1]: container_data.append('{0}\t{1}'.format(data['name'], data['bytes'])) container_data = [token.split('\t') for token in container_data] # Use a list comprehension to create a list of all the file names file_list = [] try: file_list = [token[0] for token in container_data] except IndexError: print "IndexError: Container empty" # Where we store the partitioned list of videos. # Internal lists separate what is possible to transcode in time on one VM partitioned_video_list = [] # Given a time-until-completion by Joe's look up table, we keep # decrementing "time_until_deadline" by these times until it reaches # zero, then, create a new list (representing a new vm), and repeat. tmp_t_u_d = remaining print "Time Remaining:", predictor.prettify_time(remaining) single_vm_capacity = [] for video in file_list: single_vm_capacity.append(video) prediction_time = predictor.predict(video) if prediction_time > remaining: print "WARNING: File is too big to be transcoded by VM in time." partitioned_video_list.append(single_vm_capacity) single_vm_capacity = [] tmp_t_u_d -= prediction_time continue if tmp_t_u_d - prediction_time > 0: tmp_t_u_d -= prediction_time if video == file_list[-1]: partitioned_video_list.append(single_vm_capacity) else: tmp_t_u_d = remaining partitioned_video_list.append(single_vm_capacity) single_vm_capacity = [] return partitioned_video_list
def recognize(img_path, rect_list): os.chdir(attention_root) boxes = [] for rect in rect_list: box = (rect[0], rect[1], rect[0] + rect[2], rect[1] + rect[3]) boxes.append(box) words = predictor.predict(img_path, boxes) os.chdir(cwd) return words
def process_images(input, output): if os.path.isdir(output): shutil.rmtree(output) os.makedirs(output, exist_ok=True) for segmentation in os.listdir(input): os.makedirs(os.path.join(output, segmentation), exist_ok=True) for filename in os.listdir(os.path.join(input, segmentation)): img = imread(os.path.join(input, segmentation, filename)) prediction = predict(img) imwrite(os.path.join(output, segmentation, filename), prediction)
def resultCancer(): if request.method == 'POST': gene = request.form["Gene"] variation = request.form['Variation'] text = request.form['Text'] wCancer.writerow([gene, variation, text]) re = predictor.predict() return render_template("resultCancer.html", result=re)
def main(): s = time.time() train = pd.read_csv("train.csv") test = pd.read_csv("test.csv") clean(train) clean(test) print("Data processed after " + str(time.time() - s) + " sec") #-----------Predictor------------------------------- tfidf_bag = bag(train.tweet) predictor.predict(tfidf_bag, train.label) #--------------------------------------------------- #-----------Clustering------------------------------ hateful = train.copy(deep=True) get_hateful(hateful) kmeans_model, vectorizer = classifier.train(hateful, False) print("Clusters Found after " + str(time.time() - s) + " sec")
def predict(): #Symptoms are set as a CSV list: symptoms_csv = request.form['symptoms'] symptoms = symptoms_csv.split(',') symptoms = symptoms[:-1] #Remove empty entry at end #Age: age = int(request.form['age']) #Make prediction: diagnosed_disease = predictor.predict(symptoms, age) #Connect to database: dbConn = MySQLdb.connect('localhost', 'project', 'project', 'cse3002') dbCursor = dbConn.cursor() #Get recommended drugs for disease: dbCursor.execute('select drugs_list from drugs where disease_name=%s', (diagnosed_disease, )) drugs_string = dbCursor.fetchone()[0] #Parse list: drugs_string = drugs_string.split(':') final_dstring = "" for i in range(len(drugs_string) - 1): d = drugs_string[i] drug = d.split(',') final_dstring = final_dstring + drug[0] if drug[1]: final_dstring = final_dstring + ' (Prescription Required)' final_dstring = final_dstring + ', ' if final_dstring == '': final_dstring = 'None' #Get session ID: session_id = request.cookies.get('session_id') #Check if user is anonymous: if session_id != 'ANONYMOUS': #Get current date and time: diag_datetime = str(datetime.datetime.now()).split('.')[0] #Get username: dbCursor.execute('select username from login where session_id=%s', (session_id, )) username = dbCursor.fetchone()[0] #Commit record to database: dbCursor.execute( 'insert into diagnoses values(%s, %s, %s, %s)', (username, diag_datetime, diagnosed_disease, symptoms_csv[:-1])) dbConn.commit() #Close DB connection: dbConn.close() #Return results: return render_template("diagnosis.html", disease_name=diagnosed_disease, symptoms=symptoms, age=age, drugs=final_dstring)
def processor(r_queue, s_queue): while True: data = r_queue.get() ip,entry = data.split('\t') dic = transform(entry) #process data cls = predictor.predict(dic) result = map_pt[cls] data = ip+'\t'+result s_queue.put(data) print 'from\t'+ip+'\t\tpredict\t'+result
def predict(): rawImage = request.files['file'] X = predictor.readAndNormalizeImg(rawImage) preds = predictor.predict(X) trueLabel = util.LABEL_DICT[preds[0]] data = {"prediction": trueLabel} response = jsonify(data) return response
def classify(): t = timer() """ choose here your c, gamma range """ for c in frange(0.1, 1.5, 0.1): #c = 32; for gamma in frange(0.1, 1.5, 0.1): print "### combination ###" print c, gamma print "### build model ###" sys.stdout.flush() t.next() model_creator.build_model("tmps.arff", c, gamma) sys.stdout.flush() print t.next() print "### predict ###" t.next() predictor.predict("tmps_independent.arff") print t.next() sys.stdout.flush()
def main(argv): date = "20180302" file = open("../../server/data/" + date, "r") lines = file.readlines() file.close() for i in range(len(lines)): line = lines[i] tokens = line.split(",") time = tokens[0] result = predictor.predict(date, time) process_result(tokens, time, result)
def estimate(): if request.method == 'POST': try: data = ast.literal_eval(request.data.decode("utf-8")); data = data["input"]; vec,ans = predictor.predict(data); print(vec); rv = json.dumps({"vec":vec,"ans":str(ans)}); return(rv); except Exception as ex: print(str(ex)); return(str(ex)); except Error as er: print(str(er)); return(str(er));
def partition_workload(time_until_deadline, swiftclient, container_name, file_list = None): if not file_list: container_data = [] for data in swiftclient.get_container(container_name)[1]: container_data.append('{0}\t{1}'.format(data['name'], data['bytes'])) container_data = [token.split('\t') for token in container_data] # use a list comprehension to create a list of all the filenames file_list = [] try: file_list = [token[0] for token in container_data] except IndexError: print "IndexError: Container empty" # where we store the partitioned list of videos. # Internal lists seperate what is possible to transcode in time on one VM partitioned_video_list = [] # given a time-until-completetion by joe's look up table, we keep decrementing "time_until_deadline" by # these times until it reaches zero, then, create a new list (representing a new vm), and repeat. tmp_t_u_d = time_until_deadline print "Time Remaining:", predictor.prettify_time(time_until_deadline) single_vm_capacity = [] for video in file_list: single_vm_capacity.append(video) prediction_time = predictor.predict(video) if (prediction_time > time_until_deadline): print "WARNING: File is too big to be transcoded by VM in time." partitioned_video_list.append(single_vm_capacity) single_vm_capacity = [] tmp_t_u_d -= prediction_time continue if (tmp_t_u_d - prediction_time > 0): tmp_t_u_d -= prediction_time if (video == file_list[-1]): partitioned_video_list.append(single_vm_capacity) else: tmp_t_u_d = time_until_deadline partitioned_video_list.append(single_vm_capacity) single_vm_capacity = [] return partitioned_video_list
def update(): predictor.predict()
def predict(): source = request.params.source sentences = predictor.predict(source) response.set_header('Access-Control-Allow-Origin', '*') return {"sentences": sentences}
def question_tags(): question = request.json['question'] return predict(question)
def main(): poke_name = flask.request.args.get('name') res = predictor.predict(poke_name) return json.dumps(res, ensure_ascii=False, indent=2)