# END OF MODULE 2 # TESTING PHASE start_time = time.time() score_test = compute_score(X_test, Y_test) t_test = regr.predict(score_test) print 'original t_test is in ', min(t_test), '..', max(t_test) t_test[t_test > 1] = max(t_test[t_test < 1]) t_test[t_test < 0] = min( t_test[t_test > 0]) # ! Keep t_test in [0,1] print 'corrected t_test is in ', min(t_test), '..', max(t_test) # Predict label metrics = predict_label(score_test, Y_test, t_test, seed, num_classes, verbose=1) time_profiles['test'].append(time.time() - start_time) all_metrics.append(metrics) except KeyboardInterrupt: pass # Store all_metrics and print estimates np.save(osp.join('metrics', snapshot_name + '_allmetrics.npy'), all_metrics) np.save(osp.join('metrics', snapshot_name + '_time'), time_profiles) print '\nFINAL ESTIMATES FOR', snapshot_name, 'IN', len(
regr.fit(score_train, t_train) time_profiles['train_module2'].append(time.time()-start_time) # END OF MODULE 2 # TESTING PHASE start_time = time.time() score_test = compute_score(X_test, Y_test) t_test = regr.predict(score_test) print 'original t_test is in ', min(t_test), '..', max(t_test) t_test[t_test>1] = max(t_test[t_test<1]) t_test[t_test<0] = min(t_test[t_test>0]) # ! Keep t_test in [0,1] print 'corrected t_test is in ', min(t_test), '..', max(t_test) # Predict label metrics = predict_label(score_test, Y_test, t_test, seed, num_classes, verbose=1) time_profiles['test'].append(time.time()-start_time) all_metrics.append(metrics) except KeyboardInterrupt: pass # Store all_metrics and print estimates np.save(osp.join('metrics',snapshot_name + '_allmetrics.npy'), all_metrics) np.save(osp.join('metrics',snapshot_name + '_time'), time_profiles) print '\nFINAL ESTIMATES FOR', snapshot_name,'IN',len(all_metrics),'RUNS' estimate_metrics(all_metrics)
def main(reps, pretrained_w_path, do_module1, init_seed=0, load_t=0, num_epochs=200, batchsize=96, fine_tune=0, patience=500, lr_init = 1e-3, optim='adagrad', toy=0, num_classes=23): res_root = '/home/hoa/Desktop/projects/resources' X_path=osp.join(res_root, 'datasets/msrcv2/Xaug_b01c.npy') Y_path=osp.join(res_root, 'datasets/msrcv2/Y.npy') MEAN_IMG_PATH=osp.join(res_root, 'models/ilsvrc_2012_mean.npy') snapshot=50 # save model after every `snapshot` epochs drop_p=0.5 # drop out prob. lambda2=0.0005/2 # l2-regularizer constant # step=patience/4 # decay learning after every `step` epochs lr_patience=60 # for learning rate schedule, if optim=='momentum' if toy: # unit testing num_epochs=10 data_multi=3 reps = 2 #drop_p=0 #lambda2=0 # Create name tag for the experiment if fine_tune: full_or_tune = 'tune' # description tag for storing associated files else: full_or_tune = 'full' time_stamp=time.strftime("%y%m%d%H%M%S", time.localtime()) snapshot_root = '../snapshot_models/' snapshot_name = str(num_classes)+'alex'+time_stamp+full_or_tune # LOADING DATA print 'LOADING DATA ...' X = np.load(X_path) Y = np.load(Y_path) if X.shape[1]!=3: X = b01c_to_bc01(X) N = len(Y) print 'Raw X,Y shape', X.shape, Y.shape if len(X) != len(Y): print 'Inconsistent number of input images and labels. X is possibly augmented.' MEAN_IMG = np.load(MEAN_IMG_PATH) MEAN_IMG_227 = skimage.transform.resize( np.swapaxes(np.swapaxes(MEAN_IMG,0,1),1,2), (227,227), mode='nearest', preserve_range=True) MEAN_IMG = np.swapaxes(np.swapaxes(MEAN_IMG_227,1,2),0,1).reshape((1,3,227,227)) all_metrics = [] # store metrics in each run time_profiles = { 'train_module1': [], 'train_module1_eff': [], 'train_module2': [], 'test': [] } # record training and testing time # PREPARE THEANO EXPRESSION FOR BOTH MODULES print 'COMPILING THEANO EXPRESSION ...' input_var = T.tensor4('inputs') target_var = T.imatrix('targets') network = build_model(num_classes=num_classes, input_var=input_var) # Create a loss expression for training prediction = lasagne.layers.get_output(network) loss = lasagne.objectives.binary_crossentropy(prediction, target_var) weights = lasagne.layers.get_all_params(network, regularizable=True) l2reg = theano.shared(floatX(lambda2))*T.sum([T.sum(w ** 2) for w in weights]) loss = loss.mean() + l2reg lr = theano.shared(np.array(lr_init, dtype=theano.config.floatX)) lr_decay = np.array(1./3, dtype=theano.config.floatX) # Create update expressions for training params = lasagne.layers.get_all_params(network, trainable=True) # last-layer case is actually very simple: # `params` above is a list of all (W,b)-pairs # Therefore last layer's (W,b) is params[-2:] if fine_tune == 7: # tuning params from fc7 to fc8 params = params[-2:] # elif fine_tune == 6: # tuning params from fc6 to fc8 # params = params[-4:] # TODO adjust for per-layer training with local_lr if optim=='momentum': updates = lasagne.updates.nesterov_momentum(loss, params, learning_rate=lr, momentum=0.9) elif optim=='rmsprop': updates = lasagne.updates.rmsprop(loss, params, learning_rate=lr, rho=0.9, epsilon=1e-06) elif optim=='adam': updates = lasagne.updates.adam( loss, params, learning_rate=lr, beta1=0.9, beta2=0.999, epsilon=1e-08) elif optim=='adagrad': updates = lasagne.updates.adagrad(loss, params, learning_rate=lr, epsilon=1e-06) # Create a loss expression for validation/testing test_prediction = lasagne.layers.get_output(network, deterministic=True) test_loss = lasagne.objectives.binary_crossentropy(test_prediction, target_var) test_loss = test_loss.mean() + l2reg # zero-one loss with threshold t = 0.5 for reference # zero_one_loss = T.abs_((test_prediction > theano.shared(floatX(0.5))) - target_var).sum(axis=1) #zero_one_loss /= target_var.shape[1].astype(theano.config.floatX) #zero_one_loss = zero_one_loss.mean() # Compile a function performing a backward pass (training step) on a mini-batch (by giving # the updates dictionary) and returning the corresponding training loss: bwd_fn = theano.function([input_var, target_var], loss, updates=updates,) # Compile a second function performing a forward pass, # returns validation loss, 0/1 Error, score i.e. Xout: fwd_fn = theano.function([input_var, target_var], test_loss) # Create a theano function for computing score score = lasagne.layers.get_output(network, deterministic=True) score_fn = theano.function([input_var], score) def compute_score(X, Y, batchsize=batchsize, shuffle=False): out = np.zeros(Y.shape) batch_id = 0 for batch in iterate_minibatches(X, Y, batchsize, shuffle=False): inputs, _ = batch # Flip random half of the batch flip_idx = np.random.choice(len(inputs),size=len(inputs)/2,replace=False) if len(flip_idx)>1: inputs[flip_idx] = inputs[flip_idx,:,:,::-1] # Substract mean image inputs = (inputs - MEAN_IMG).astype(theano.config.floatX) # MEAN_IMG is broadcasted numpy-way, take note if want theano expression instead if len(inputs)==batchsize: out[batch_id*batchsize : (batch_id+1)*batchsize] = score_fn(inputs) batch_id += 1 else: out[batch_id*batchsize : ] = score_fn(inputs) return out try: # MAIN LOOP FOR EACH RUN for seed in np.arange(reps)+init_seed: # reset learning rate lr.set_value(lr_init) print '\nRUN', seed, '...' # Split train/val/test set indicies = np.arange(len(Y)) Y_train_val, Y_test, idx_train_val, idx_test = train_test_split( Y, indicies, random_state=seed, train_size=float(2)/3) Y_train, Y_val, idx_train, idx_val = train_test_split( Y_train_val, idx_train_val, random_state=seed) print "Train/val/test set size:",len(idx_train),len(idx_val),len(idx_test) idx_aug_train = data_aug(idx_train, mode='aug', isMat='idx', N=N) Xaug_train = X[idx_aug_train] Yaug_train = data_aug(Y_train, mode='aug', isMat='Y', N=N) idx_aug_val = data_aug(idx_val, mode='aug', isMat='idx', N=N) Xaug_val = X[idx_aug_val] Yaug_val = data_aug(Y_val, mode='aug', isMat='Y', N=N) # Module 2 training set is composed of module 1 training and validation set idx_aug_train_val = data_aug(idx_train_val, mode='aug', isMat='idx', N=N) Xaug_train_val = X[idx_aug_train_val] Yaug_train_val = data_aug(Y_train_val, mode='aug', isMat='Y', N=N) # Test set X_test = X[idx_test] # Y_test is already returned in the first train_test_split print "Augmented train/val/test set size:",len(Xaug_train),len(Yaug_val), len(X_test) print "Augmented (X,Y) dtype:", Xaug_train.dtype, Yaug_val.dtype print "Processed Mean image:",MEAN_IMG.dtype,MEAN_IMG.shape if toy: # try to overfit a tiny subset of the data Xaug_train = Xaug_train[:batchsize*data_multi + batchsize/2] Yaug_train = Yaug_train[:batchsize*data_multi + batchsize/2] Xaug_val = Xaug_val[:batchsize + batchsize/2] Yaug_val = Yaug_val[:batchsize + batchsize/2] # Init by pre-trained weights, if any if len(pretrained_w_path)>0: layer_list = lasagne.layers.get_all_layers(network) # 22 layers if pretrained_w_path.endswith('pkl'): # load reference_net # use case: weights initialized from pre-trained reference nets f = open(pretrained_w_path, 'r') w_list = pickle.load(f) # list of 11 (W,b)-pairs f.close() lasagne.layers.set_all_param_values(layer_list[-3], w_list[:-2]) # exclude (W,b) of fc8 # BIG NOTE: don't be confused, it's pure coincident that layer_list # and w_list have the same index here. The last element of layer_list are # [.., fc6, drop6, fc7, drop7, fc8], while w_list are # [..., W, b, W, b, W, b] which, eg w_list[-4] and w_list[-3] correspond to # params that are associated with fc7 i.e. params that connect drop6 to fc7 elif pretrained_w_path.endswith('npz'): # load self-trained net # use case: continue training from a snapshot model with np.load(pretrained_w_path) as f: # NOTE: only load snapshot of the same `seed` # w_list = [f['arr_%d' % i] for i in range(len(f.files))] w_list = [f.items()['arr_%d' % i] for i in range(len(f.files))] # load from bkviz, one-time use lasagne.layers.set_all_param_values(network, w_list) elif pretrained_w_path.endswith('/'): # init from 1 of the 30 snapshots from os import listdir import re files = [f for f in listdir(pretrained_w_path) if osp.isfile(osp.join(pretrained_w_path, f))] for file_name in files: regex_seed = 'full%d_' %seed match_seed = re.search(regex_seed, file_name) if match_seed: regex = r"\d+[a-zA-Z]+\d+[a-zA-Z]+\d+\_\d+" match = re.search(regex, file_name) snapshot_name = match.group(0) print snapshot_name with np.load(osp.join(pretrained_w_path,snapshot_name)+'.npz') as f: w_list = [f['arr_%d' % i] for i in range(len(f.files))] lasagne.layers.set_all_param_values(network, w_list) # START MODULE 1 module1_time = 0 if do_module1: print 'MODULE 1' training_history={} training_history['iter_training_loss'] = [] training_history['iter_validation_loss'] = [] training_history['training_loss'] = [] training_history['validation_loss'] = [] training_history['learning_rate'] = [] # http://deeplearning.net/tutorial/gettingstarted.html#early-stopping # early-stopping parameters n_train_batches = Xaug_train.shape[0] / batchsize if Xaug_train.shape[0] % batchsize != 0: n_train_batches += 1 patience = patience # look as this many examples regardless patience_increase = 2 # wait this much longer when a new best is found lr_patience_increase = 1.01 improvement_threshold = 0.995 # a relative improvement of this much is # considered significant; a significant test # MIGHT be better validation_frequency = min(n_train_batches, patience/2) # go through this many # minibatches before checking the network # on the validation set; in this case we # check every epoch best_params = None epoch_validation_loss = 0 # indicates that valid_loss has not been computed yet best_validation_loss = np.inf best_iter = -1 lr_iter = -1 test_score = 0. start_time = time.time() done_looping = False epoch = 0 # Finally, launch the training loop. print("Starting training...") # We iterate over epochs: print("\nEpoch\tTrain Loss\tValid Loss\tBest-ValLoss-and-Iter\tTime\tL.Rate") sys.setrecursionlimit(10000) try: # Early-stopping implementation while (not done_looping) and (epoch<num_epochs): # In each epoch, we do a full pass over the training data: train_err = 0 train_batches = 0 start_time = time.time() for batch in iterate_minibatches(Xaug_train, Yaug_train, batchsize, shuffle=True): inputs, targets = batch # Horizontal flip half of the images bs = inputs.shape[0] indices = np.random.choice(bs, bs / 2, replace=False) inputs[indices] = inputs[indices, :, :, ::-1] # Substract mean image inputs = (inputs - MEAN_IMG).astype(theano.config.floatX) # MEAN_IMG is broadcasted numpy-way, take note if want theano expression instead train_err_batch = bwd_fn(inputs, targets) train_err += train_err_batch train_batches += 1 iter_now = epoch*n_train_batches + train_batches training_history['iter_training_loss'].append(train_err_batch) training_history['iter_validation_loss'].append(epoch_validation_loss) if (iter_now+1) % validation_frequency == 0: # a full pass over the validation data: val_err = 0 #zero_one_err = 0 val_batches = 0 for batch in iterate_minibatches(Xaug_val, Yaug_val, batchsize, shuffle=False): inputs, targets = batch # Substract mean image inputs = (inputs - MEAN_IMG).astype(theano.config.floatX) # MEAN_IMG is broadcasted numpy-way, take note if want theano expression instead val_err_batch = fwd_fn(inputs, targets) val_err += val_err_batch val_batches += 1 epoch_validation_loss = val_err / val_batches if epoch_validation_loss < best_validation_loss: if epoch_validation_loss < best_validation_loss*improvement_threshold: patience = max(patience, iter_now * patience_increase) # lr_patience *= lr_patience_increase best_params = lasagne.layers.get_all_param_values(network) best_validation_loss = epoch_validation_loss best_iter = iter_now lr_iter = best_iter else: # decay learning rate if optim=='momentum' if optim=='momentum' and (iter_now - lr_iter) > lr_patience: lr.set_value(lr.get_value() * lr_decay) lr_iter = iter_now if patience <= iter_now: done_looping = True break # Record training history training_history['training_loss'].append(train_err / train_batches) training_history['validation_loss'].append(epoch_validation_loss) training_history['learning_rate'].append(lr.get_value()) epoch_time = time.time() - start_time module1_time += epoch_time # Then we print the results for this epoch: print("{}\t{:.6f}\t{:.6f}\t{:.6f}\t{}\t{:.3f}\t{}".format( epoch+1, training_history['training_loss'][-1], training_history['validation_loss'][-1], best_validation_loss, best_iter+1, epoch_time, training_history['learning_rate'][-1] )) if (epoch+1)%snapshot==0: # TODO try to save weights at best_iter snapshot_path_string = snapshot_root+snapshot_name+str(seed)+'_'+str(iter_now+1) try: # use case: terminate experiment before reaching `reps` np.savez(snapshot_path_string+'.npz', *best_params) np.savez(snapshot_path_string+'_history.npz', training_history) plot_loss(training_history, snapshot_path_string+'_loss.png') # plot_conv_weights(lasagne.layers.get_all_layers(network)[1], # snapshot_path_string+'_conv1weights_') except KeyboardInterrupt, TypeError: print 'Did not save', snapshot_name+str(seed)+'_'+str(iter_now+1) pass epoch += 1 except KeyboardInterrupt, MemoryError: # Sadly this can only catch KeyboardInterrupt pass print 'Training finished or KeyboardInterrupt (Training is never finished, only abandoned)' module1_time_eff = module1_time / iter_now * best_iter print('Total and Effective training time are {:.0f} and {:.0f}').format( module1_time, module1_time_eff) time_profiles['train_module1'].append(module1_time) time_profiles['train_module1_eff'].append(module1_time_eff) # Save model after num_epochs or KeyboardInterrupt if (epoch+1)%snapshot!=0: # to avoid duplicate save snapshot_path_string = snapshot_root+snapshot_name+str(seed)+'_'+str(iter_now+1) if not toy: try: # use case: terminate experiment before reaching `reps` print 'Saving model...' np.savez(snapshot_path_string+'.npz', *best_params) np.savez(snapshot_path_string+'_history.npz', training_history) plot_loss(training_history, snapshot_path_string+'_loss.png') # plot_conv_weights(lasagne.layers.get_all_layers(network)[1], # snapshot_path_string+'_conv1weights_') except KeyboardInterrupt, TypeError: print 'Did not save', snapshot_name+str(seed)+'_'+str(iter_now+1) pass # And load them again later on like this: #with np.load('../snapshot_models/23alex16042023213910.npz') as f: # param_values = [f['arr_%d' % i] for i in range(len(f.files))] # or # training_history = f['arr_0'].items() # lasagne.layers.set_all_param_values(network, param_values) # END OF MODULE 1 # START MODULE 2 print '\nMODULE 2' if not do_module1: if pretrained_w_path.endswith('pkl'): snapshot_name = str(num_classes)+'alexOTS' # short for "off-the-shelf init" elif pretrained_w_path.endswith('npz'): # Resume from a SINGLE snapshot # extract name pattern, e.g. '23alex16042023213910full10' # from string '../snapshot_models/23alex16042023213910full10_100.npz' import re regex = r"\d+[a-zA-Z]+\d+[a-zA-Z]+\d+" match = re.search(regex, pretrained_w_path) snapshot_name = match.group(0) elif pretrained_w_path.endswith('/'): # RESUMED FROM TRAINED MODULE 1 (ONE-TIME USE) from os import listdir import re files = [f for f in listdir(pretrained_w_path) if osp.isfile(osp.join(pretrained_w_path, f))] for file_name in files: regex_seed = 'full%d_' %seed match_seed = re.search(regex_seed, file_name) if match_seed: regex = r"\d+[a-zA-Z]+\d+[a-zA-Z]+\d+\_\d+" match = re.search(regex, file_name) snapshot_name = match.group(0) print snapshot_name with np.load(osp.join(pretrained_w_path,snapshot_name)+'.npz') as f: w_list = [f['arr_%d' % i] for i in range(len(f.files))] lasagne.layers.set_all_param_values(network, w_list) else: # MAIN BRANCH - assume do_module1 is True AND have run `snapshot` epochs if (epoch+1)>snapshot: with np.load(snapshot_path_string+'.npz') as f: # reload the best params for module 1 w_list = [f['arr_%d' % i] for i in range(len(f.files))] lasagne.layers.set_all_param_values(network, w_list) score_train = compute_score(Xaug_train_val, Yaug_train_val) start_time = time.time() if load_t: # Server failed at the wrong time. We only have t backed-up if pretrained_w_path.endswith('/'): from os import listdir import re files = [f for f in listdir(pretrained_w_path) if osp.isfile(osp.join(pretrained_w_path, f))] for file_name in files: regex_seed = 'full%d_' %seed match_seed = re.search(regex_seed, file_name) if match_seed: regex = r"\d+[a-zA-Z]+\d+[a-zA-Z]+\d+\_\d+" match = re.search(regex, file_name) snapshot_name = match.group(0) t_train = np.load(osp.join('t','{0}.npy'.format(snapshot_name))) else: # MAIN BRANCH thresholds = Threshold(score_train, Yaug_train_val) thresholds.find_t_for() # determine t_train for each score_train. It will take a while t_train = np.asarray(thresholds.t) print 't_train is in ', t_train.min(), '..', t_train.max() # `thresholds` holds t_train vector in .t attribute print('t_train produced in {:.3f}s').format(time.time()-start_time) np.save('t/'+snapshot_name+str(seed)+'.npy', t_train) # Predictive model for t regr = linear_model.RidgeCV(cv=5) # Ridge() is LinearClassifier() with L2-reg regr.fit(score_train, t_train) time_profiles['train_module2'].append(time.time()-start_time) # END OF MODULE 2 # TESTING PHASE start_time = time.time() score_test = compute_score(X_test, Y_test) t_test = regr.predict(score_test) print 'original t_test is in ', min(t_test), '..', max(t_test) t_test[t_test>1] = max(t_test[t_test<1]) t_test[t_test<0] = min(t_test[t_test>0]) # ! Keep t_test in [0,1] print 'corrected t_test is in ', min(t_test), '..', max(t_test) # Predict label metrics = predict_label(score_test, Y_test, t_test, seed, num_classes, verbose=1) time_profiles['test'].append(time.time()-start_time) all_metrics.append(metrics)
def main(reps, pretrained_w_path, do_module1, init_seed=0, load_t=0, num_epochs=200, batchsize=96, fine_tune=0, patience=500, lr_init=1e-3, optim='adagrad', toy=0, num_classes=23): res_root = '/home/hoa/Desktop/projects/resources' X_path = osp.join(res_root, 'datasets/msrcv2/Xaug_b01c.npy') Y_path = osp.join(res_root, 'datasets/msrcv2/Y.npy') MEAN_IMG_PATH = osp.join(res_root, 'models/ilsvrc_2012_mean.npy') snapshot = 50 # save model after every `snapshot` epochs drop_p = 0.5 # drop out prob. lambda2 = 0.0005 / 2 # l2-regularizer constant # step=patience/4 # decay learning after every `step` epochs lr_patience = 60 # for learning rate schedule, if optim=='momentum' if toy: # unit testing num_epochs = 10 data_multi = 3 reps = 2 #drop_p=0 #lambda2=0 # Create name tag for the experiment if fine_tune: full_or_tune = 'tune' # description tag for storing associated files else: full_or_tune = 'full' time_stamp = time.strftime("%y%m%d%H%M%S", time.localtime()) snapshot_root = '../snapshot_models/' snapshot_name = str(num_classes) + 'alex' + time_stamp + full_or_tune # LOADING DATA print 'LOADING DATA ...' X = np.load(X_path) Y = np.load(Y_path) if X.shape[1] != 3: X = b01c_to_bc01(X) N = len(Y) print 'Raw X,Y shape', X.shape, Y.shape if len(X) != len(Y): print 'Inconsistent number of input images and labels. X is possibly augmented.' MEAN_IMG = np.load(MEAN_IMG_PATH) MEAN_IMG_227 = skimage.transform.resize(np.swapaxes( np.swapaxes(MEAN_IMG, 0, 1), 1, 2), (227, 227), mode='nearest', preserve_range=True) MEAN_IMG = np.swapaxes(np.swapaxes(MEAN_IMG_227, 1, 2), 0, 1).reshape( (1, 3, 227, 227)) all_metrics = [] # store metrics in each run time_profiles = { 'train_module1': [], 'train_module1_eff': [], 'train_module2': [], 'test': [] } # record training and testing time # PREPARE THEANO EXPRESSION FOR BOTH MODULES print 'COMPILING THEANO EXPRESSION ...' input_var = T.tensor4('inputs') target_var = T.imatrix('targets') network = build_model(num_classes=num_classes, input_var=input_var) # Create a loss expression for training prediction = lasagne.layers.get_output(network) loss = lasagne.objectives.binary_crossentropy(prediction, target_var) weights = lasagne.layers.get_all_params(network, regularizable=True) l2reg = theano.shared(floatX(lambda2)) * T.sum( [T.sum(w**2) for w in weights]) loss = loss.mean() + l2reg lr = theano.shared(np.array(lr_init, dtype=theano.config.floatX)) lr_decay = np.array(1. / 3, dtype=theano.config.floatX) # Create update expressions for training params = lasagne.layers.get_all_params(network, trainable=True) # last-layer case is actually very simple: # `params` above is a list of all (W,b)-pairs # Therefore last layer's (W,b) is params[-2:] if fine_tune == 7: # tuning params from fc7 to fc8 params = params[-2:] # elif fine_tune == 6: # tuning params from fc6 to fc8 # params = params[-4:] # TODO adjust for per-layer training with local_lr if optim == 'momentum': updates = lasagne.updates.nesterov_momentum(loss, params, learning_rate=lr, momentum=0.9) elif optim == 'rmsprop': updates = lasagne.updates.rmsprop(loss, params, learning_rate=lr, rho=0.9, epsilon=1e-06) elif optim == 'adam': updates = lasagne.updates.adam(loss, params, learning_rate=lr, beta1=0.9, beta2=0.999, epsilon=1e-08) elif optim == 'adagrad': updates = lasagne.updates.adagrad(loss, params, learning_rate=lr, epsilon=1e-06) # Create a loss expression for validation/testing test_prediction = lasagne.layers.get_output(network, deterministic=True) test_loss = lasagne.objectives.binary_crossentropy(test_prediction, target_var) test_loss = test_loss.mean() + l2reg # zero-one loss with threshold t = 0.5 for reference # zero_one_loss = T.abs_((test_prediction > theano.shared(floatX(0.5))) - target_var).sum(axis=1) #zero_one_loss /= target_var.shape[1].astype(theano.config.floatX) #zero_one_loss = zero_one_loss.mean() # Compile a function performing a backward pass (training step) on a mini-batch (by giving # the updates dictionary) and returning the corresponding training loss: bwd_fn = theano.function( [input_var, target_var], loss, updates=updates, ) # Compile a second function performing a forward pass, # returns validation loss, 0/1 Error, score i.e. Xout: fwd_fn = theano.function([input_var, target_var], test_loss) # Create a theano function for computing score score = lasagne.layers.get_output(network, deterministic=True) score_fn = theano.function([input_var], score) def compute_score(X, Y, batchsize=batchsize, shuffle=False): out = np.zeros(Y.shape) batch_id = 0 for batch in iterate_minibatches(X, Y, batchsize, shuffle=False): inputs, _ = batch # Flip random half of the batch flip_idx = np.random.choice(len(inputs), size=len(inputs) / 2, replace=False) if len(flip_idx) > 1: inputs[flip_idx] = inputs[flip_idx, :, :, ::-1] # Substract mean image inputs = (inputs - MEAN_IMG).astype(theano.config.floatX) # MEAN_IMG is broadcasted numpy-way, take note if want theano expression instead if len(inputs) == batchsize: out[batch_id * batchsize:(batch_id + 1) * batchsize] = score_fn(inputs) batch_id += 1 else: out[batch_id * batchsize:] = score_fn(inputs) return out try: # MAIN LOOP FOR EACH RUN for seed in np.arange(reps) + init_seed: # reset learning rate lr.set_value(lr_init) print '\nRUN', seed, '...' # Split train/val/test set indicies = np.arange(len(Y)) Y_train_val, Y_test, idx_train_val, idx_test = train_test_split( Y, indicies, random_state=seed, train_size=float(2) / 3) Y_train, Y_val, idx_train, idx_val = train_test_split( Y_train_val, idx_train_val, random_state=seed) print "Train/val/test set size:", len(idx_train), len( idx_val), len(idx_test) idx_aug_train = data_aug(idx_train, mode='aug', isMat='idx', N=N) Xaug_train = X[idx_aug_train] Yaug_train = data_aug(Y_train, mode='aug', isMat='Y', N=N) idx_aug_val = data_aug(idx_val, mode='aug', isMat='idx', N=N) Xaug_val = X[idx_aug_val] Yaug_val = data_aug(Y_val, mode='aug', isMat='Y', N=N) # Module 2 training set is composed of module 1 training and validation set idx_aug_train_val = data_aug(idx_train_val, mode='aug', isMat='idx', N=N) Xaug_train_val = X[idx_aug_train_val] Yaug_train_val = data_aug(Y_train_val, mode='aug', isMat='Y', N=N) # Test set X_test = X[idx_test] # Y_test is already returned in the first train_test_split print "Augmented train/val/test set size:", len(Xaug_train), len( Yaug_val), len(X_test) print "Augmented (X,Y) dtype:", Xaug_train.dtype, Yaug_val.dtype print "Processed Mean image:", MEAN_IMG.dtype, MEAN_IMG.shape if toy: # try to overfit a tiny subset of the data Xaug_train = Xaug_train[:batchsize * data_multi + batchsize / 2] Yaug_train = Yaug_train[:batchsize * data_multi + batchsize / 2] Xaug_val = Xaug_val[:batchsize + batchsize / 2] Yaug_val = Yaug_val[:batchsize + batchsize / 2] # Init by pre-trained weights, if any if len(pretrained_w_path) > 0: layer_list = lasagne.layers.get_all_layers( network) # 22 layers if pretrained_w_path.endswith('pkl'): # load reference_net # use case: weights initialized from pre-trained reference nets f = open(pretrained_w_path, 'r') w_list = pickle.load(f) # list of 11 (W,b)-pairs f.close() lasagne.layers.set_all_param_values( layer_list[-3], w_list[:-2]) # exclude (W,b) of fc8 # BIG NOTE: don't be confused, it's pure coincident that layer_list # and w_list have the same index here. The last element of layer_list are # [.., fc6, drop6, fc7, drop7, fc8], while w_list are # [..., W, b, W, b, W, b] which, eg w_list[-4] and w_list[-3] correspond to # params that are associated with fc7 i.e. params that connect drop6 to fc7 elif pretrained_w_path.endswith('npz'): # load self-trained net # use case: continue training from a snapshot model with np.load( pretrained_w_path ) as f: # NOTE: only load snapshot of the same `seed` # w_list = [f['arr_%d' % i] for i in range(len(f.files))] w_list = [ f.items()['arr_%d' % i] for i in range(len(f.files)) ] # load from bkviz, one-time use lasagne.layers.set_all_param_values(network, w_list) elif pretrained_w_path.endswith( '/'): # init from 1 of the 30 snapshots from os import listdir import re files = [ f for f in listdir(pretrained_w_path) if osp.isfile(osp.join(pretrained_w_path, f)) ] for file_name in files: regex_seed = 'full%d_' % seed match_seed = re.search(regex_seed, file_name) if match_seed: regex = r"\d+[a-zA-Z]+\d+[a-zA-Z]+\d+\_\d+" match = re.search(regex, file_name) snapshot_name = match.group(0) print snapshot_name with np.load( osp.join(pretrained_w_path, snapshot_name) + '.npz') as f: w_list = [ f['arr_%d' % i] for i in range(len(f.files)) ] lasagne.layers.set_all_param_values( network, w_list) # START MODULE 1 module1_time = 0 if do_module1: print 'MODULE 1' training_history = {} training_history['iter_training_loss'] = [] training_history['iter_validation_loss'] = [] training_history['training_loss'] = [] training_history['validation_loss'] = [] training_history['learning_rate'] = [] # http://deeplearning.net/tutorial/gettingstarted.html#early-stopping # early-stopping parameters n_train_batches = Xaug_train.shape[0] / batchsize if Xaug_train.shape[0] % batchsize != 0: n_train_batches += 1 patience = patience # look as this many examples regardless patience_increase = 2 # wait this much longer when a new best is found lr_patience_increase = 1.01 improvement_threshold = 0.995 # a relative improvement of this much is # considered significant; a significant test # MIGHT be better validation_frequency = min(n_train_batches, patience / 2) # go through this many # minibatches before checking the network # on the validation set; in this case we # check every epoch best_params = None epoch_validation_loss = 0 # indicates that valid_loss has not been computed yet best_validation_loss = np.inf best_iter = -1 lr_iter = -1 test_score = 0. start_time = time.time() done_looping = False epoch = 0 # Finally, launch the training loop. print("Starting training...") # We iterate over epochs: print( "\nEpoch\tTrain Loss\tValid Loss\tBest-ValLoss-and-Iter\tTime\tL.Rate" ) sys.setrecursionlimit(10000) try: # Early-stopping implementation while (not done_looping) and (epoch < num_epochs): # In each epoch, we do a full pass over the training data: train_err = 0 train_batches = 0 start_time = time.time() for batch in iterate_minibatches(Xaug_train, Yaug_train, batchsize, shuffle=True): inputs, targets = batch # Horizontal flip half of the images bs = inputs.shape[0] indices = np.random.choice(bs, bs / 2, replace=False) inputs[indices] = inputs[indices, :, :, ::-1] # Substract mean image inputs = (inputs - MEAN_IMG).astype( theano.config.floatX) # MEAN_IMG is broadcasted numpy-way, take note if want theano expression instead train_err_batch = bwd_fn(inputs, targets) train_err += train_err_batch train_batches += 1 iter_now = epoch * n_train_batches + train_batches training_history['iter_training_loss'].append( train_err_batch) training_history['iter_validation_loss'].append( epoch_validation_loss) if (iter_now + 1) % validation_frequency == 0: # a full pass over the validation data: val_err = 0 #zero_one_err = 0 val_batches = 0 for batch in iterate_minibatches( Xaug_val, Yaug_val, batchsize, shuffle=False): inputs, targets = batch # Substract mean image inputs = (inputs - MEAN_IMG).astype( theano.config.floatX) # MEAN_IMG is broadcasted numpy-way, take note if want theano expression instead val_err_batch = fwd_fn(inputs, targets) val_err += val_err_batch val_batches += 1 epoch_validation_loss = val_err / val_batches if epoch_validation_loss < best_validation_loss: if epoch_validation_loss < best_validation_loss * improvement_threshold: patience = max( patience, iter_now * patience_increase) # lr_patience *= lr_patience_increase best_params = lasagne.layers.get_all_param_values( network) best_validation_loss = epoch_validation_loss best_iter = iter_now lr_iter = best_iter else: # decay learning rate if optim=='momentum' if optim == 'momentum' and ( iter_now - lr_iter) > lr_patience: lr.set_value(lr.get_value() * lr_decay) lr_iter = iter_now if patience <= iter_now: done_looping = True break # Record training history training_history['training_loss'].append(train_err / train_batches) training_history['validation_loss'].append( epoch_validation_loss) training_history['learning_rate'].append( lr.get_value()) epoch_time = time.time() - start_time module1_time += epoch_time # Then we print the results for this epoch: print("{}\t{:.6f}\t{:.6f}\t{:.6f}\t{}\t{:.3f}\t{}". format(epoch + 1, training_history['training_loss'][-1], training_history['validation_loss'][-1], best_validation_loss, best_iter + 1, epoch_time, training_history['learning_rate'][-1])) if ( epoch + 1 ) % snapshot == 0: # TODO try to save weights at best_iter snapshot_path_string = snapshot_root + snapshot_name + str( seed) + '_' + str(iter_now + 1) try: # use case: terminate experiment before reaching `reps` np.savez(snapshot_path_string + '.npz', *best_params) np.savez(snapshot_path_string + '_history.npz', training_history) plot_loss(training_history, snapshot_path_string + '_loss.png') # plot_conv_weights(lasagne.layers.get_all_layers(network)[1], # snapshot_path_string+'_conv1weights_') except KeyboardInterrupt, TypeError: print 'Did not save', snapshot_name + str( seed) + '_' + str(iter_now + 1) pass epoch += 1 except KeyboardInterrupt, MemoryError: # Sadly this can only catch KeyboardInterrupt pass print 'Training finished or KeyboardInterrupt (Training is never finished, only abandoned)' module1_time_eff = module1_time / iter_now * best_iter print('Total and Effective training time are {:.0f} and {:.0f}' ).format(module1_time, module1_time_eff) time_profiles['train_module1'].append(module1_time) time_profiles['train_module1_eff'].append(module1_time_eff) # Save model after num_epochs or KeyboardInterrupt if (epoch + 1) % snapshot != 0: # to avoid duplicate save snapshot_path_string = snapshot_root + snapshot_name + str( seed) + '_' + str(iter_now + 1) if not toy: try: # use case: terminate experiment before reaching `reps` print 'Saving model...' np.savez(snapshot_path_string + '.npz', *best_params) np.savez(snapshot_path_string + '_history.npz', training_history) plot_loss(training_history, snapshot_path_string + '_loss.png') # plot_conv_weights(lasagne.layers.get_all_layers(network)[1], # snapshot_path_string+'_conv1weights_') except KeyboardInterrupt, TypeError: print 'Did not save', snapshot_name + str( seed) + '_' + str(iter_now + 1) pass # And load them again later on like this: #with np.load('../snapshot_models/23alex16042023213910.npz') as f: # param_values = [f['arr_%d' % i] for i in range(len(f.files))] # or # training_history = f['arr_0'].items() # lasagne.layers.set_all_param_values(network, param_values) # END OF MODULE 1 # START MODULE 2 print '\nMODULE 2' if not do_module1: if pretrained_w_path.endswith('pkl'): snapshot_name = str( num_classes ) + 'alexOTS' # short for "off-the-shelf init" elif pretrained_w_path.endswith( 'npz'): # Resume from a SINGLE snapshot # extract name pattern, e.g. '23alex16042023213910full10' # from string '../snapshot_models/23alex16042023213910full10_100.npz' import re regex = r"\d+[a-zA-Z]+\d+[a-zA-Z]+\d+" match = re.search(regex, pretrained_w_path) snapshot_name = match.group(0) elif pretrained_w_path.endswith( '/'): # RESUMED FROM TRAINED MODULE 1 (ONE-TIME USE) from os import listdir import re files = [ f for f in listdir(pretrained_w_path) if osp.isfile(osp.join(pretrained_w_path, f)) ] for file_name in files: regex_seed = 'full%d_' % seed match_seed = re.search(regex_seed, file_name) if match_seed: regex = r"\d+[a-zA-Z]+\d+[a-zA-Z]+\d+\_\d+" match = re.search(regex, file_name) snapshot_name = match.group(0) print snapshot_name with np.load( osp.join(pretrained_w_path, snapshot_name) + '.npz') as f: w_list = [ f['arr_%d' % i] for i in range(len(f.files)) ] lasagne.layers.set_all_param_values( network, w_list) else: # MAIN BRANCH - assume do_module1 is True AND have run `snapshot` epochs if (epoch + 1) > snapshot: with np.load(snapshot_path_string + '.npz' ) as f: # reload the best params for module 1 w_list = [f['arr_%d' % i] for i in range(len(f.files))] lasagne.layers.set_all_param_values(network, w_list) score_train = compute_score(Xaug_train_val, Yaug_train_val) start_time = time.time() if load_t: # Server failed at the wrong time. We only have t backed-up if pretrained_w_path.endswith('/'): from os import listdir import re files = [ f for f in listdir(pretrained_w_path) if osp.isfile(osp.join(pretrained_w_path, f)) ] for file_name in files: regex_seed = 'full%d_' % seed match_seed = re.search(regex_seed, file_name) if match_seed: regex = r"\d+[a-zA-Z]+\d+[a-zA-Z]+\d+\_\d+" match = re.search(regex, file_name) snapshot_name = match.group(0) t_train = np.load( osp.join('t', '{0}.npy'.format(snapshot_name))) else: # MAIN BRANCH thresholds = Threshold(score_train, Yaug_train_val) thresholds.find_t_for( ) # determine t_train for each score_train. It will take a while t_train = np.asarray(thresholds.t) print 't_train is in ', t_train.min(), '..', t_train.max() # `thresholds` holds t_train vector in .t attribute print('t_train produced in {:.3f}s').format(time.time() - start_time) np.save('t/' + snapshot_name + str(seed) + '.npy', t_train) # Predictive model for t regr = linear_model.RidgeCV(cv=5) # Ridge() is LinearClassifier() with L2-reg regr.fit(score_train, t_train) time_profiles['train_module2'].append(time.time() - start_time) # END OF MODULE 2 # TESTING PHASE start_time = time.time() score_test = compute_score(X_test, Y_test) t_test = regr.predict(score_test) print 'original t_test is in ', min(t_test), '..', max(t_test) t_test[t_test > 1] = max(t_test[t_test < 1]) t_test[t_test < 0] = min( t_test[t_test > 0]) # ! Keep t_test in [0,1] print 'corrected t_test is in ', min(t_test), '..', max(t_test) # Predict label metrics = predict_label(score_test, Y_test, t_test, seed, num_classes, verbose=1) time_profiles['test'].append(time.time() - start_time) all_metrics.append(metrics)