def prepare_raw(path): # Settings. data = [] color = [] padding = abs(size_input - size_label) / 2 stride = 21 # Read in image and convert to ycrcb color space. img = cv.imread(path) im = cv.cvtColor(img, cv.COLOR_BGR2YCR_CB) img = im2double(im) # Only use the luminance value. # Create groundtruth and baseline image. # im_label = modcrop(img) # size = im_label.shape size = img.shape # im_label = scipy.misc.imresize(im_label, [size[0] * 3, size[1] * 3], interp='bicubic') img_temp = scipy.misc.imresize( img, [size[0] * multiplier, size[1] * multiplier], interp='bicubic') color_temp = scipy.misc.imresize( im, [size[0] * multiplier, size[1] * multiplier], interp='bicubic') # img_temp = scipy.ndimage.interpolation.zoom(img, 3.0, prefilter=False) im_label = img_temp[:, :, 0] im_color = color_temp[:, :, 1:3] h = im_label.shape[0] w = im_label.shape[1] # Generate subimages. for x in range(0, h - size_input, stride): for y in range(0, w - size_input, stride): subim_input = im_label[x:x + size_input, y:y + size_input] subim_color = im_color[int(x + padding):int(x + padding + size_label), int(y + padding):int(y + padding + size_label), :] # subim_label = im_label[int(x + padding) : int(x + padding + size_label), int(y + padding) : int(y + padding + size_label)] subim_input = subim_input.reshape([size_input, size_input, 1]) subim_color = subim_color.reshape([size_label, size_label, 2]) # subim_label = subim_label.reshape([size_label, size_label, 1]) data.append(subim_input) color.append(subim_color) # label.append(subim_label) data = np.array(data) color = np.array(color) # label = np.array(label) # Write to HDF5 file. # savepath = os.path.join(os.getcwd(), 'checkpoint/test_raw_image.h5') # with h5py.File(savepath, 'w') as hf: # hf.create_dataset('data', data=data) # hf.create_dataset('color', data=color) # hf.create_dataset('label', data=label) return data, color
def prepare_data(path): # Settings. data = [] label = [] padding = abs(size_input - size_label) / 2 stride = 21 # Read in image and convert to ycrcb color space. img = cv.imread(path) img = cv.cvtColor(img, cv.COLOR_RGB2YCR_CB) img = im2double(img) # Only use the luminance value. # Create groundtruth and baseline image. im_label = modcrop(img, scale=multiplier) size = im_label.shape h = size[0] w = size[1] im_temp = scipy.misc.imresize(im_label, 1 / multiplier, interp='bicubic') im_input = scipy.misc.imresize(im_temp, multiplier * 1.0, interp='bicubic') print('im_temp shape:', im_temp.shape) print('im_input shape:', im_input.shape) # Generate subimages. for x in range(0, h - size_input, stride): for y in range(0, w - size_input, stride): subim_input = im_input[x:x + size_input, y:y + size_input] subim_label = im_label[int(x + padding):int(x + padding + size_label), int(y + padding):int(y + padding + size_label)] subim_input = subim_input.reshape([size_input, size_input, 1]) subim_label = subim_label.reshape([size_label, size_label, 1]) data.append(subim_input) label.append(subim_label) data = np.array(data) label = np.array(label) # Write to HDF5 file. # savepath = os.path.join(os.getcwd(), 'checkpoint/test_image.h5') # with h5py.File(savepath, 'w') as hf: # hf.create_dataset('data', data=data) # hf.create_dataset('label', data=label) return data, label
def prepare_raw(path): # Settings. data = [] color = [] # Read in image and convert to ycrcb color space. img = cv.imread(path) im = cv.cvtColor(img, cv.COLOR_BGR2YCR_CB) img = im2double(im) # Only use the luminance value. size = img.shape img_temp = scipy.misc.imresize(img, [size[0] * multiplier, size[1] * multiplier], interp='bicubic') color_temp = scipy.misc.imresize(im, [size[0] * multiplier, size[1] * multiplier], interp='bicubic') im_label = img_temp[:, :, 0] im_color = color_temp[:, :, 1:3] data = np.array(im_label).reshape([1, img.shape[0] * multiplier, img.shape[1] * multiplier, 1]) color = np.array(im_color) return data, color