kernel_initializer='uniform', activation='relu', input_dim=inputnum)) model.add( Dense(units=nodes, kernel_initializer='uniform', activation='relu')) model.add(Dense(units=1, kernel_initializer='uniform')) # compile the model model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mse']) return model # load data files df_train = load_Training_data(file) df_test = load_test_data(file) # filter dataframe by ID if unit != 0: df_train = df_train[df_train['UNIT_ID'] == unit] df_test = df_test[df_test['UNIT_ID'] == unit] print('result filtered for ID', unit) # create the training and testing sets from the dataframes training_set = df_train.iloc[:, 2:].values test_set = df_test.iloc[:, 2:].values # scaling scaler = MinMaxScaler((-1, 1)) training_scaled = scaler.fit_transform(training_set) test_scaled = scaler.transform(test_set)
# Compiling the RNN regressor.compile(optimizer='adam', loss='mean_squared_error', metrics=['mse']) es = EarlyStopping(monitor='val_loss', min_delta=0, patience=2, verbose=1) # Fitting the LSTM to the Training set start = time.time() regressor.fit(X_train, y_train, epochs=99, batch_size=32, callbacks=[es], validation_split=0.2) end = time.time() #loading the test data dataset_test = load_test_data(file) # filter dataset by ID if unit != 0: dataset_test = dataset_test[dataset_test['UNIT_ID'] == unit] # select feature from the dataframe test_set = dataset_test.iloc[:, 2:].values # scale the test data test_sc = MinMaxScaler(feature_range=(-1, 1)) inputs = test_sc.fit_transform(test_set) # scale for the predicted values sc_predict = MinMaxScaler(feature_range=(-1, 1)) sc_predict.fit_transform(test_set[:, 24:25])