param_dict['hyper_params'] = { 'len_global': len_global, 'len_local': len_local, 'neighbor_size': neighbor_size, 'res': args.res, 'cnn': args.cnn, 'lr': args.lr, 'BN': True if args.BN == 1 else False } if __name__ == '__main__': # =============================================================== # load data ts = time.time() data, mmn = utils.get_data(param_dict['dataset'], param_dict['len_global'], param_dict['len_local'], param_dict['neighbor_size'], param_dict['data_choice']) if param_dict['dataset'] == 'bj_taxi': param_dict['train_data'] = [ data[name] for name in [ 'g_vacation_train', 'g_hour_train', 'g_dayOfWeek_train', 'g_weather_train', 'g_continuous_external_train', 't_vacation_train', 't_hour_train', 't_dayOfWeek_train', 't_weather_train', 't_continuous_external_train', 'current_local_flow_train', 'stack_local_flow_train', 'global_flow_train' ] ] param_dict['test_data'] = [ data[name] for name in [
xgboost_outflow_ground_truth.append(outflow_ground + 1) xgboost_inflow_data = np.asarray(xgboost_inflow_data) xgboost_outflow_data = np.asarray(xgboost_outflow_data) xgboost_inflow_ground_truth = np.asarray(xgboost_inflow_ground_truth) xgboost_outflow_ground_truth = np.asarray(xgboost_outflow_ground_truth) return xgboost_inflow_data, xgboost_outflow_data, xgboost_inflow_ground_truth, xgboost_outflow_ground_truth if __name__ == '__main__': # =============================================================== # load data ts = time.time() data, mmn = utils.get_data(dataset, len_global, len_local, neighbor_size, data_choice) print('\n Load data elapsed time : %.3f seconds\n' % (time.time() - ts)) print('=' * 30) # =============================================================== # evaluate model ts = time.time() xgboost_inflow_data, xgboost_outflow_data, xgboost_inflow_ground_truth, xgboost_outflow_ground_truth = \ get_data(data['predict_time_test'], neighbor_size, data['index_cut_test']) # special, add one model parameter for different external size, due to different dataset if dataset == 'bj_taxi': error_low = 1e-3 else: