wresult2 = [] for result,sentence in zip(wresult1,testlocs): wresult2.append([]) print sentence for entity in result: print entity wresult2[-1].append((sentence[entity[0]], sentence[entity[1]], entity[2])) wresult = wresult2 # char model data = preprocess.getcData(datafile) cdic, cvectors = preprocess.chars2dic2("char_vector_50",chardim) padding_id = cdic["<padding>"] = len(cvectors) pids = [padding_id] cvectors.append(np.random.randn(chardim)) embedding = cvectors indexdata = preprocess.raw2num1(data,cdic,tags,0,padding_id) traindata = indexdata[0:len(indexdata)/20*16] devdata = indexdata[len(indexdata)/20*16:len(indexdata)/20*18] testdata = indexdata[len(indexdata)/20*18:len(indexdata)] testwdata = data[len(indexdata)/20*18:len(indexdata)] cgold = [] for item in testdata:
af = open(nerstr+"/data", 'wb') pickle.dump(indexdata,af) af.close() df = open(nerstr+"/worddic", 'wb') pickle.dump(wdic,df) df.close() tf = open(nerstr+"/tags",'wb') pickle.dump(tags,tf) tf.close() elif mtype == "char": data = preprocess.getcData(datafile) tags = preprocess.tags2dic(map(lambda x:x[1], data)) cdic, cvectors = preprocess.chars2dic2("char_vector_50",chardim) padding_id = cdic["<padding>"] = len(cvectors) pids = [padding_id] cvectors.append(np.random.randn(chardim)) embedding = cvectors indexdata = preprocess.raw2num1(data,cdic,tags,0,padding_id) indim = chardim nerstr = sys.argv[1] if os.path.exists(nerstr): shutil.rmtree(nerstr) os.mkdir(nerstr) af = open(nerstr+"/data", 'wb') pickle.dump(indexdata,af) af.close() df = open(nerstr+"/chardic", 'wb')