def main(config):
    import time
    T0 = time.time()

    F1, F2, F3, F4, F5, F6, F7, T, N, V, P, Bt, Bx, By, Bz, E, Kp, Dst, ap, AE = dataprocess1(
    )
    data_in = np.hstack((F1, F2, F3, F4, F5, F6, F7, T, N, V, P, Bt, Bx, By,
                         Bz, E, Kp, Dst, ap, AE))
    print('Modified data_in shape:', data_in.shape)
    data_out = dataprocess2()
    print('data_out shape:', data_out.shape)

    data_in = data_in
    Setpre = data_in
    Labelpre = data_out

    # multiprocess training
    pool = multiprocessing.Pool(processes=7)
    ## seven years data, split into 7 parts.  2408 = 344*7
    oneyear = 344
    res = []
    res2 = []
    for i in range(7):
        print('The %d year' % i)
        yrange = np.arange(oneyear * i, oneyear * i + oneyear)
        ShowSet = Setpre[yrange, :]
        ShowLabel = Labelpre[yrange, :]
        Set = np.delete(Setpre, yrange, axis=0)
        Label = np.delete(Labelpre, yrange, axis=0)
        res.append(
            pool.apply_async(supermodel1_2,
                             (Set, Label, ShowSet, ShowLabel, config)))

    pool.close()
    pool.join()
    print('finished !!!')
    print('res!!!', res)
    for j in res:
        x = j.get()
        res2.append(x)
    #--------------------------------------
    seed = config.seed
    res2 = pd.DataFrame(res2)
    print('res2 shape:', res2)
    path = './result2/'
    res2.to_csv(path + 'FFN_prediction' + str(seed) + '.csv',
                index=False,
                header=None,
                sep=',')

    TT = time.time()
    print('finally finished !!!', TT - T0)
def main2(config):
    F1, F2, F3, F4, F5, F6, F7, T, N, V, P, Bt, Bx, By, Bz, E, Kp, Dst, ap, AE = dataprocess1(
    )
    data_in = np.hstack((F1, F2, F3, F4, F5, F6, F7, T, N, V, P, Bt, Bx, By,
                         Bz, E, Kp, Dst, ap, AE))
    print('Modified data_in shape:', data_in.shape)
    data_out = dataprocess2()
    print('data_out shape:', data_out.shape)

    data_in = data_in  #/10
    Setpre = data_in
    Labelpre = data_out

    ## seven years data, split into 7 parts.  2408 = 344*7
    oneyear = 344
    DF1, Dy, Dy2 = [], [], []

    for i in range(7):
        print('The %d year' % i)
        yrange = np.arange(oneyear * i, oneyear * i + oneyear)
        ShowSet = Setpre[yrange, :]
        ShowLabel = Labelpre[yrange, :]
        Set = np.delete(Setpre, yrange, axis=0)
        Label = np.delete(Labelpre, yrange, axis=0)
        df1, dy, dy2 = firstorder(Set, Label, ShowSet, ShowLabel, config)
        DF1.append(df1)
        Dy.append(dy)
        Dy2.append(dy2)

    DF1 = np.array(DF1).reshape(-1, 100)
    Dy = np.array(Dy).reshape(-1)
    Dy2 = np.array(Dy2).reshape(-1)
    print('D shape:', DF1.shape, Dy.shape, Dy2.shape)

    fx1 = np.sum(np.abs(np.array(DF1)), axis=0)
    fx1 = NORM2(fx1)

    Dx = list(np.sum(np.array(DF1), axis=1).reshape(-1))
    print('Dx:', Dx)
    rate1 = ratecal(Dx, Dy)
    rate1_2 = ratecal(Dx, Dy2)
    print('rate1', rate1, rate1_2)
    # fisrt order information
    fx1 = np.array(fx1).reshape(-1)
    return fx1
        pre1.append(x[0])
        pre2.append(x[1])
        pre3.append(x[2])

    pre1 = np.array(pre1).reshape(-1)
    pre2 = np.array(pre2).reshape(-1)
    pre3 = np.array(pre3).reshape(-1)
    prediction = np.vstack((pre1, pre2, pre3))

    TT = time.time()
    print('finished!', TT - T0)
    return prediction


if __name__ == '__main__':
    F1, F2, F3, F4, F5, F6, F7, T, N, V, P, Bt, E, Kp, Dst, ap, AE = dataprocess1(
    )
    data_in = np.hstack(
        (F1, F2, F3, F4, F5, F6, F7, T, N, V, P, Bt, E, Kp, Dst, ap, AE))
    print('Modified data_in shape:', data_in.shape)
    data_out = dataprocess2()
    print('data_out shape:', data_out.shape)

    Setpre = data_in
    Labelpre = data_out

    for j in range(10):
        pre = []
        config = config2()
        config.seed += 1
        for i in range(1, 10, 1):
            if hasattr(config, 'taurange'):
def main(config):
    import time
    T0 = time.time()

    F1, F2, F3, F4, F5, F6, F7, T, N, V, P, Bt, E, Kp, Dst, ap, AE = dataprocess1(
    )
    data_in = np.hstack(
        (F1, F2, F3, F4, F5, F6, F7, T, N, V, P, Bt, E, Kp, Dst, ap, AE))
    print('Modified data_in shape:', data_in.shape)
    data_out = dataprocess2()
    print('data_out shape:', data_out.shape)

    data_in = data_in
    Setpre = data_in
    Labelpre = data_out

    # multiprocess training
    pool = multiprocessing.Pool(processes=7)
    ## seven years data, split into 7 parts.  2408 = 344*7
    oneyear = 344
    res = []
    res2 = []
    weightall = []
    for i in range(7):
        print('The %d year' % i)
        yrange = np.arange(oneyear * i, oneyear * i + oneyear)
        ShowSet = Setpre[yrange, :]
        ShowLabel = Labelpre[yrange, :]
        Set = np.delete(Setpre, yrange, axis=0)
        Label = np.delete(Labelpre, yrange, axis=0)
        #trloss, teloss, shloss, trainPE, testPE, showPE, trainCC, testCC, showCC, TT, \
        # weight = supermodel1(Set, Label, ShowSet, ShowLabel, config)
        res.append(
            pool.apply_async(supermodel1,
                             (Set, Label, ShowSet, ShowLabel, config)))
        #res.append([trloss, teloss, shloss, trainPE, testPE, showPE, TT])
        #weightall.append(weight)
    pool.close()
    pool.join()
    print('finished !!!')
    print('res!!!', res)
    for j in res:
        x = j.get()
        res2.append(x[:-1])
        weightall.append(x[-1])
    #--------------------------------------
    run_num = config.run_num
    seed = config.seed
    learnrate = config.learnrate
    epochs = config.epochs
    batchsize = config.batch_size
    reg1 = config.reg1
    reg2 = config.reg2
    num_in = config.num_in
    node1 = config.node1
    node2 = config.node2
    weight_init = config.weight_init
    f1 = config.fun1
    f2 = config.fun2
    #Ls = config.Loss
    path = config.path0
    logfile = config.logfile

    res2 = pd.DataFrame(res2)
    res2.to_csv(path + 'FFNres' + str(run_num) + '.csv',
                index=False,
                header=None,
                sep=',')
    weightall = pd.DataFrame(weightall)
    res3 = pd.read_csv(path + 'FFNres' + str(run_num) + '.csv',
                       index_col=False,
                       header=None,
                       skiprows=0,
                       sep=',')
    res_mean = res3.mean(axis=0)
    res_mean = list(res_mean)
    res_mean = [np.round(x, 6) for x in res_mean]
    print('res_mean:', res_mean)

    weightall_mean = weightall.mean(axis=0)
    weightall_mean = list(weightall_mean)
    weightall_mean = [np.round(x, 12) for x in weightall_mean]
    print('weightall_mean:', weightall_mean)

    # save data to logfile
    FFN_para = pd.read_csv('./result2/' + logfile,
                           index_col=False,
                           header=0,
                           sep=',')
    config_para = [
        run_num, seed, epochs, batchsize, learnrate, reg1, reg2, num_in, node1,
        node2, weight_init, f1, f2
    ]
    finalres = config_para + res_mean + weightall_mean
    # columns name
    col1 = [
        'run_num', 'seed', 'epochs', 'batchsize', 'learnrate', 'reg1', 'reg2',
        'num_in', 'node1', 'node2', 'weight_init', 'fun1', 'fun2'
    ]
    col2 = [
        'trloss', 'teloss', 'shloss', 'trainPE', 'testPE', 'showPE', 'trainCC',
        'testCC', 'showCC', 'TT'
    ]
    col3 = []
    for i in range(num_in):
        col3 += ['w' + str(i + 1)]
    finalcol = col1 + col2 + col3
    # save data
    lognum = len(FFN_para)
    FFN_para.loc[lognum] = finalres
    FFN_para.to_csv('./result2/' + logfile,
                    index=False,
                    header=finalcol,
                    sep=',')

    TT = time.time()
    print('finally finished !!!', TT - T0)
def main(config):
    F1,F2,F3,F4,F5,F6,F7,T,N,V,P,Bt,E,Kp,Dst,ap,AE = dataprocess1()
    data_in = np.hstack((F1,F2,F3,F4,F5,F6,F7,T,N,V,P,Bt,E,Kp,Dst,ap,AE))
    print('Modified data_in shape:', data_in.shape)
    data_out = dataprocess2()
    print('data_out shape:', data_out.shape)

    Setpre = data_in
    Labelpre = data_out

    # multiprocess training
    pool = multiprocessing.Pool(processes=7)
    ## seven years data, split into 7 parts.  2408 = 344*7
    oneyear = 344
    res = []
    trloss, teloss, shloss = [], [], []
    pre1, pre2, pre3, pre4, pre5, pre6, pre7, pre8, pre9 = [], [], [], [], [], [], [], [], []
    for i in range(7):
        print('The %d year'%i)
        yrange = np.arange(oneyear*i, oneyear*i+oneyear)
        ShowSet = Setpre[yrange, :]
        ShowLabel = Labelpre[yrange, :]
        Set = np.delete(Setpre, yrange, axis=0)
        Label = np.delete(Labelpre, yrange, axis=0)

        res.append(pool.apply_async(supermodel3_2, (Set, Label, ShowSet, ShowLabel, config)))

    pool.close()
    pool.join()
    print('finished !!!')
    print('res!!!', res)
    for j in res:
        x = j.get()
        pre1.append(x[0])
        pre2.append(x[1])
        pre3.append(x[2])
        pre4.append(x[3])
        pre5.append(x[4])
        pre6.append(x[5])
        pre7.append(x[6])
        pre8.append(x[7])
        pre9.append(x[8])
        trloss.append(x[9])
        teloss.append(x[10])
        shloss.append(x[11])

    ## calculate the correct rate
    rate1, rate2, rate3, rate4, rate5, rate6, rate7, rate8, rate9 = [], [], [], [], [], [], [], [], []
    for i in range(7):
        print('The %d year'%i)
        yrange = np.arange(oneyear*i, oneyear*i+oneyear)
        ShowSet = Setpre[yrange, :]
        ShowLabel = Labelpre[yrange, :]
        prediction1 = pre1[i]
        prediction2 = pre2[i]
        prediction3 = pre3[i]
        prediction4 = pre4[i]
        prediction5 = pre5[i]
        prediction6 = pre6[i]
        prediction7 = pre7[i]
        prediction8 = pre8[i]
        prediction9 = pre9[i]
        rate1.append(correct_rate(ShowLabel, prediction1))
        rate2.append(correct_rate(ShowLabel, prediction2))
        rate3.append(correct_rate(ShowLabel, prediction3))
        rate4.append(correct_rate(ShowLabel, prediction4))
        rate5.append(correct_rate(ShowLabel, prediction5))
        rate6.append(correct_rate(ShowLabel, prediction6))
        rate7.append(correct_rate(ShowLabel, prediction7))
        rate8.append(correct_rate(ShowLabel, prediction8))
        rate9.append(correct_rate(ShowLabel, prediction9))

    ###---------------
    run_num = config.run_num
    seed = config.seed
    learnrate = config.learnrate
    epochs = config.epochs
    batchsize = config.batch_size
    reg1 = config.reg1
    reg2 = config.reg2
    num_in = config.num_in
    node1 = config.node1
    node2 = config.node2
    weight_init = config.weight_init
    f1 = config.fun1
    f2 = config.fun2

    logfile = './result2/quan_log3.csv'

    para_col = ['run_num', 'seed', 'num_in', 'epochs', 'batchsize', 'learnrate', 'reg1', 'reg2', 'node1', 'node2',
            'weight_init', 'fun1', 'fun2', 'trloss', 'teloss', 'shloss']
    ratecol, ratedata = [], []
    for i in range(1, 8, 1):
        for j in range(1, 10, 1):
            ratecol.append(str(i)+'_'+str(j))
    ratedata = rate1+rate2+rate3+rate4+rate5+rate6+rate7+rate8+rate9

    finalcol = para_col+ratecol

    # save data to logfile
    Quan_para = pd.read_csv(logfile, index_col=False, header=0, sep=',')
    config_para = [run_num, seed, num_in, epochs, batchsize, learnrate, reg1, reg2, node1, node2, weight_init, f1, f2]
    finalres = config_para+[np.mean(trloss), np.mean(teloss), np.mean(shloss)]+ratedata

    lognum = len(Quan_para)

    Quan_para.loc[lognum] = finalres
    Quan_para.to_csv(logfile, index=False, header=finalcol, sep=',')

    TT = time.time()
    print('finished!!!', TT-T0)
예제 #6
0
def main(config):
    F1,F2,F3,F4,F5,F6,F7,T,N,V,P,Bt,E,Kp,Dst,ap,AE = dataprocess1()
    data_in = np.hstack((F1,F2,F3,F4,F5,F6,F7,T,N,V,P,Bt,E,Kp,Dst,ap,AE))
    print('Modified data_in shape:', data_in.shape)
    data_out = dataprocess2()
    print('data_out shape:', data_out.shape)

    Setpre = data_in
    Labelpre = data_out

    # multiprocess training
    pool = multiprocessing.Pool(processes=7)
    ## seven years data, split into 7 parts.  2408 = 344*7
    oneyear = 344
    res = []
    trloss, teloss, shloss = [], [], []
    pre2, pre3 = [], []
    for i in range(7):
        print('The %d year'%i)
        yrange = np.arange(oneyear*i, oneyear*i+oneyear)
        ShowSet = Setpre[yrange, :]
        ShowLabel = Labelpre[yrange, :]
        Set = np.delete(Setpre, yrange, axis=0)
        Label = np.delete(Labelpre, yrange, axis=0)

        res.append(pool.apply_async(supermodel3, (Set, Label, ShowSet, ShowLabel, config)))

    pool.close()
    pool.join()
    print('finished !!!')
    print('res!!!', res)
    for j in res:
        x = j.get()
        trloss.append(x[0])
        teloss.append(x[1])
        shloss.append(x[2])
        pre2.append(x[-2])
        pre3.append(x[-1])

    ## calculate the correct rate
    rate1, rate2 = [], []
    for i in range(7):
        print('The %d year'%i)
        yrange = np.arange(oneyear*i, oneyear*i+oneyear)
        ShowSet = Setpre[yrange, :]
        ShowLabel = Labelpre[yrange, :]
        Set = np.delete(Setpre, yrange, axis=0)
        Label = np.delete(Labelpre, yrange, axis=0)
        prediction2 = pre2[i]
        prediction3 = pre3[i]
        ## attention, due to "//10", the datasize may not be consistent
        prediction2_num = len(prediction2)
        rate1.append(correct_rate(Label[0: prediction2_num], prediction2))
        rate2.append(correct_rate(ShowLabel, prediction3))

    ###---------------
    tau = config.tau
    run_num = config.run_num
    seed = config.seed
    learnrate = config.learnrate
    epochs = config.epochs
    batchsize = config.batch_size
    reg1 = config.reg1
    reg2 = config.reg2
    num_in = config.num_in
    node1 = config.node1
    node2 = config.node2
    weight_init = config.weight_init
    f1 = config.fun1
    f2 = config.fun2
    #Ls = config.Loss

    logfile = './result2/quan_log.csv'

    rate1_mean = np.mean(rate1)
    rate2_mean = np.mean(rate2)


    para_col = ['run_num', 'tau', 'seed', 'num_in', 'epochs', 'batchsize', 'learnrate', 'reg1', 'reg2', 'node1', 'node2',
            'weight_init', 'fun1', 'fun2', 'trloss', 'teloss', 'shloss', 'testrate', 'showrate']
    ratecol, ratedata = [], []
    for i in range(1, 8, 1):
        ratecol.append('t'+str(i))
        ratecol.append('s'+str(i))
        ratedata.append(rate1[i-1])
        ratedata.append(rate2[i-1])
    finalcol = para_col+ratecol

    # save data to logfile
    Quan_para = pd.read_csv(logfile, index_col=False, header=0, sep=',')
    config_para = [run_num, tau, seed, num_in, epochs, batchsize, learnrate, reg1, reg2, node1, node2, weight_init, f1, f2]
    finalres = config_para+[np.mean(trloss), np.mean(teloss), np.mean(shloss), rate1_mean, rate2_mean]+ratedata

    lognum = len(Quan_para)

    Quan_para.loc[lognum] = finalres
    Quan_para.to_csv(logfile, index=False, header=finalcol, sep=',')

    TT = time.time()
    print('finished!!!', TT-T0)