r'C:\Users\pravi\PycharmProjects\Sentence_similarity\data\sts\sick2014\SICK_train.txt' ) train_data_1 = res_train['data_1'] train_data_2 = res_train['data_2'] train_length1 = res_train['length1'] train_length2 = res_train['length2'] labels = res_train['label'] word2Id = res_train['word2Id'] Id2Word = res_train['Id2Word'] max_sequence_length = res_train['max_sequence_length'] vocab_size = res_train['vocab_size'] total_classes = res_train['total_classes'] res_test = load_test_data( r'C:\Users\pravi\PycharmProjects\Sentence_similarity\data\sts\sick2014\SICK_test_annotated.txt', max_sequence_length, word2Id, Id2Word) word2Id = res_test['word2Id'] test_data_1 = res_test['data_1'] test_data_2 = res_test['data_2'] test_labels = res_test['label'] test_length1 = res_test['length1'] test_length2 = res_test['length2'] Id2Word = res_test['Id2Word'] Id2Vec = np.zeros([len(Id2Word.keys()), embedding_size]) words_list = word_vecs.word2vec.keys() for i in range(len(Id2Word.keys())): word = Id2Word[i] if word in words_list: Id2Vec[i, :] = word_vecs.word2vec[word]
alphabet = preprocess.labels() # Training data X_train, X_te, y_train, y_te, train_ws = preprocess.load_data() X_train = np.vstack((X_train, X_te)) y_train = np.hstack((y_train, y_te)) train_data = MyDataset(X_train, y_train, preprocess.make_transform(mode="eval")) train_loader = DataLoader(train_data, batch_size=512, shuffle=False, num_workers=8, pin_memory=True) # Testing data X_test, y_test, test_ws = preprocess.load_test_data() test_data = MyDataset(X_test, y_test, preprocess.make_transform(mode="eval")) test_loader = DataLoader(test_data, batch_size=512, shuffle=False, num_workers=8, pin_memory=True) base_dir = os.getcwd() model_dir = os.path.join(base_dir, "Code", "model") model_path = os.path.join(model_dir, "sign_model.pth") with open(os.path.join(model_dir, "model_specification"), "r") as ms: model_name = ms.readline() # Load the trained model
path=r'C:\Users\pravi\PycharmProjects\NLI\data_pickles\data') print("done") train_data_1 = res['data_1'] train_data_2 = res['data_2'] train_label = res['labels'] train_data_len_1 = res['data_length_1'] train_data_len_2 = res['data_length_2'] word2Id = res['word2Id'] words_data_list = word2Id.keys() Id2Word = res['Id2Word'] max_sequence_length = res['max_sequence_length'] total_classes = res['total_classes'] test_res = load_test_data(dev_path, word2Id, Id2Word, max_sequence_length) test_data_1 = test_res['data_1'] test_data_2 = test_res['data_2'] test_label = test_res['labels'] test_data_len_1 = test_res['data_length_1'] test_data_len_2 = test_res['data_length_2'] word2Id = test_res['word2Id'] Id2Vec = np.zeros([len(Id2Word.keys()), embedding_size]) words_list = word_vecs.word2vec.keys() for i in range(len(Id2Word.keys())): word = Id2Word[i] if word in words_list: Id2Vec[i, :] = word_vecs.word2vec[word] else: Id2Vec[i, :] = word_vecs.word2vec['unknown']
with open(PICKLE_FILENAME, 'wb') as f: pickle.dump(model, f) print('Done.') training_data = np.genfromtxt(LOG_CSV_FILENAME, delimiter=',') plt.plot(training_data[1:, 0], training_data[1:, 1], label='Train loss') plt.plot(training_data[1:, 0], training_data[1:, 2], label='Test loss') plt.legend() plt.xlabel('Epoch') plt.show() # TEST MODE else: with open(PICKLE_FILENAME, 'rb') as f: model = pickle.load(f) if not TEST_ON_REAL_IMAGES: test_images = load_test_data(TEST_FILENAME) for i in range(NUM_EXAMPLES_TO_SHOW): image = test_images[i][0] img_tensor = torch.FloatTensor(image) img_tensor = img_tensor.view(1, 1, 96, 96) output = model(img_tensor) output = output.data[0].numpy() output = (output * 48.0) + 48.0 plot_image_and_predictions(image, output) else: img = Image.open(TEST_IMAGES[0]).convert('L') img = img.resize([96, 96], Image.ANTIALIAS) img_data = np.asarray(img.getdata()).reshape(img.size) img_data = img_data / float(PIXEL_MAX_VAL) # normalize to 0..1 img_tensor = torch.FloatTensor(img_data) img_tensor = img_tensor.view(1, 1, 96, 96)