def test(x): mu, sigma = preprocess.muSigma(x) self.assertAlmostEqual(1.23902738264240, x[1][2]) self.assertEqual(5, len(mu)) self.assertEqual(5, len(sigma)) self.assertAlmostEqual(2.87969736221038, mu[0]) self.assertAlmostEqual(2.04868506865762, sigma[0]) self.assertAlmostEqual(-0.99025024303433, (x[0][0] - mu[0]) / sigma[0]) self.assertAlmostEqual(1.97861578296198, mu[2]) self.assertAlmostEqual(2.33076030134340, sigma[2]) self.assertAlmostEqual(-0.31731637092553, (x[1][2] - mu[2]) / sigma[2]) y = preprocess.normalize(x, mu, sigma) m, n = y.shape self.assertEqual(4, m) self.assertEqual(5, n) self.assertAlmostEqual(-0.99025024303433, y[0][0]) self.assertAlmostEqual(-0.31731637092553, y[1][2]) u = preprocess.sigmoid(y) self.assertAlmostEqual(0.27086265279957, u[0][0]) self.assertAlmostEqual(0.42132990768430, u[1][2])
def __init__(self, raw): train = self.mix(raw.train) test = self.mix(raw.test) valid = self.mix(raw.valid) self.mu, self.sigma = preprocess.muSigma(train[0]) Dataset.__init__(self, self.normalize(train), self.normalize(valid), self.normalize(test))