def evaluate(clf, clf_name):
    f1_macro = []
    f1_micro = []
    accuracy = []
    combineTrainX = []
    combineTrainY = []
    for i in range(36):
        trainRMSX, trainX, trainY = getXY(training[i])
        validRMSX, validX, validY = getXY(validation[i])
        # combine validatation and training together
        trainRMSX.extend(validRMSX)
        trainX.extend(validX)
        trainY.extend(validY)
        combineTrainX.extend(trainRMSX)
        combineTrainY.extend(trainY)
    # train the model
    clf.fit(combineTrainX, combineTrainY)
    for i in range(36):
        testRMSX, testX, testY = getXY(testing[i])
        # test the model
        predictY = clf.predict(testRMSX)
        f1_macro.append(f1_score(testY, predictY, average='macro'))
        accuracy.append(accuracy_score(testY, predictY))

    print("Macro-F1: {}, Accuracy: {}".format(mean(f1_macro), mean(accuracy)))
    f1_scores_2 = [clf_name, mean(f1_macro), stdev(f1_macro)]
    f1_scores_2.extend(f1_macro)
    accuracies_2 = [clf_name, mean(accuracy), stdev(accuracy)]
    accuracies_2.extend(accuracy)
    exportCSV(f1_scores_2, "full_f1_macro_agg.csv")
    exportCSV(accuracies_2, "full_accuracy_agg.csv")
예제 #2
0
def evaluate_user_hmms():
    f1_macro_RMS = []
    f1_micro_RMS = []
    accuracy_RMS = []
    f1_macro = []
    f1_micro = []
    accuracy = []
    for i in range(36):
        print("at user {}".format(i))
        trainRMSX, trainX, trainY = getXY(training[i])
        validRMSX, validX, validY = getXY(validation[i])
        testRMSX, testX, testY = getXY(testing[i])
        # combine validatation and training together
        trainRMSX.extend(validRMSX)
        trainX.extend(validX)
        trainY.extend(validY)
        # classes as ints
        trainY = [int(floatclass) for floatclass in trainY]
        testY = [int(floatclass) for floatclass in testY]

        # RMS windows
        # train and test the model
        predictRMSY, _, _ = evaluate_hmm_model(trainRMSX, trainY, testRMSX, testY)
        # evaluate the model
        f1_macro_RMS.append(f1_score(testY, predictRMSY, average='macro'))
        f1_micro_RMS.append(f1_score(testY, predictRMSY, average='micro'))
        accuracy_RMS.append(accuracy_score(testY, predictRMSY))

        # get input in list of list format (RMS inputs are already as such)
        # from 3D
        trainX = pd.concat(trainX)
        testX = pd.concat(testX)
        trainX = trainX.values.tolist()
        testX = testX.values.tolist()
        # trainX.reshape()
        # testX.reshape()
        # print("trainX shape: {}".format(trainX.shape))
        # print("testX shape: {}".format(testX.shape))

        # 200 for each value
        trainY_expand = []
        testY_expand = []
        #for val in trainY:


        # Raw windows
        # train and test the model
        predictY, _, _ = evaluate_hmm_model(trainX, trainY, testX, testY)
        # evaluate the model 
        f1_macro.append(f1_score(testY, predictY, average='macro'))
        f1_micro.append(f1_score(testY, predictY, average='micro'))
        accuracy.append(accuracy_score(testY, predictY))

    print("RMS! Macro-F1: {}, Micro-F1: {}, Accuracy: {}".format(mean(f1_macro_RMS), mean(f1_micro_RMS), mean(accuracy_RMS)))
    # print("RAW! Macro-F1: {}, Micro-F1: {}, Accuracy: {}".format(mean(f1_macro), mean(f1_micro), mean(accuracy)))
    exportCSV(f1_macro_RMS, "hmm_f1_macro_RMS.csv")
    exportCSV(f1_micro_RMS, "hmm_f1_micro_RMS.csv")
    exportCSV(accuracy_RMS, "hmm_accuracy_RMS.csv")
    return
예제 #3
0
                     batch_size=batch_size,
                     callbacks=[es, mcp_save],
                     validation_data=(X_valid, y_valid))
    return model


training, validation, testing = train_valid_test_split()
results = []
epochs = 160
individual_training = False
if individual_training:
    for i in range(36):
        print("----------------------\n")
        print("Training for user {}\n".format(i + 1))
        print("----------------------\n")
        trainRMSX, trainX, trainY = getXY(training[i])
        validRMSX, validX, validY = getXY(validation[i])

        # get the testing data
        testRMSX, testX, testY = getXY(testing[i])

        trainX = np.asarray([X.values for X in trainX])
        trainY = np.asarray(trainY)
        validX = np.asarray([X.values for X in validX])
        validY = np.asarray(validY)
        testX = np.asarray([X.values for X in testX])
        testY = np.asarray(testY)

        # train and test the model
        model = train_model(i + 1, trainX, trainY, validX, validY, epochs,
                            individual_training)
예제 #4
0
def evaluate_single_hmm():
    f1_macro_RMS = []
    f1_micro_RMS = []
    accuracy_RMS = []
    f1_macro = []
    f1_micro = []
    accuracy = []
    combineTrainX = []
    combineTrainY = []
    for i in range(36):
        # print("combining data: at user {}".format(i))
        trainRMSX, trainX, trainY = getXY(training[i])
        validRMSX, validX, validY = getXY(validation[i])
        # combine validatation and training together
        trainRMSX.extend(validRMSX)
        trainX.extend(validX)
        trainY.extend(validY)

        combineTrainX.extend(trainRMSX)
        combineTrainY.extend(trainY)
        combineTrainY = [int(floatclass) for floatclass in combineTrainY]

    # train
    # Reorder train data by class
    classes = 6
    x_train_in, _ = group_training_by_class(classes, combineTrainX, combineTrainY)
    # Make models for each class
    hmm_models = train_hmm_models_per_user(classes, x_train_in)

    # test the model for each user
    for i in range(36):
        print("testing: at user {}".format(i))
        testRMSX, testX, testY = getXY(testing[i])
        # classes as ints
        testY = [int(floatclass) for floatclass in testY]

        # RMS windows
        # test the model
        # Classify each sample
        predictRMSY = test_hmm_models_per_user(classes, testRMSX, hmm_models)
        # evaluate the model
        f1_macro_RMS.append(f1_score(testY, predictRMSY, average='macro'))
        f1_micro_RMS.append(f1_score(testY, predictRMSY, average='micro'))
        accuracy_RMS.append(accuracy_score(testY, predictRMSY))
        #print("\t RMS! Macro-F1: {}, Micro-F1: {}, Accuracy: {}".format(mean(f1_macro_RMS), mean(f1_micro_RMS), mean(accuracy_RMS)))

        '''
        # Raw windows
        # train and test the model
        predictY, _, _ = evaluate_hmm_model(trainX, trainY, testX, testY)
        # evaluate the model 
        f1_macro.append(f1_score(testY, predictY, average='macro'))
        f1_micro.append(f1_score(testY, predictY, average='micro'))
        accuracy.append(accuracy_score(testY, predictY))
        '''
    print("RMS! Macro-F1: {}, Micro-F1: {}, Accuracy: {}".format(mean(f1_macro_RMS), mean(f1_micro_RMS), mean(accuracy_RMS)))
    #print("Macro-F1: {}, Micro-F1: {}, Accuracy: {}".format(mean(f1_macro), mean(f1_micro), mean(accuracy)))
    exportCSV(f1_macro_RMS, "hmm_f1_macro_RMS.csv")
    exportCSV(f1_micro_RMS, "hmm_f1_micro_RMS.csv")
    exportCSV(accuracy_RMS, "hmm_accuracy_RMS.csv")
    return