out = model(q) _, pred = torch.max(out.data, 1) total += label.size(0) # batch size correct += (pred == label).sum() acc = 100 * (correct.cpu().numpy() / total) return acc if __name__ == "__main__": # 데이터 처리 assert torch.cuda.is_available(), "cuda is not available" os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = "0" dataset = custom_dataset.Custom_dataset() train_data = dataset.get_data() val_data = train_data[:100] train_data = train_data[100:] train_loader = DataLoader( train_data, batch_size=c.batch, shuffle=True, num_workers=1, #.cpu_processor, drop_last=True) # test_loader = DataLoader(test_data, # batch_size=c.batch, # shuffle=False,
correct += (pred == label).sum() acc = 100 * (correct.cpu().numpy() / total) return acc if __name__ == "__main__": path_csv = config.path_csv # 데이터 처리 start = time.time() vocab = v.create_vocab(path_csv=path_csv) word_to_index = vocab.get_data() print("time vocab load : ", time.time() - start) start = time.time() dataset = custom_dataset.Custom_dataset(word_to_index, path_csv=path_csv) train_data = dataset.get_data() print("데이터 준비 완료") print("time data load : ", time.time() - start) print(len(train_data)) train_loader = DataLoader( train_data, batch_size=config.batch, shuffle=True, # num_workers=config.cpu_processor, drop_last=True) test_dataset = custom_dataset.Custom_dataset(word_to_index, path_csv="train_data.csv")
def __init__(self): path = "./train_data.csv" vocab = v.create_vocab(path_csv=path) word_to_index = vocab.get_data() self.dataset = c.Custom_dataset(word_to_index, path) self.model = torch.load("./model.pth")
if __name__ == "__main__": # 데이터 처리 start = time.time() vocab = v.create_vocab(mode=config.vocab_mode) vocab_list, word_to_index = vocab.get_data() print("time vocab load : ", time.time() - start) start = time.time() glove = custom_glove() embedding = glove.get_data(vocab_list) print("time glove emb load : ", time.time() - start) start = time.time() dataset = custom_dataset.Custom_dataset(vocab_list, word_to_index) train_data, test_data, dev_data = dataset.get_data() print("time data load : ", time.time() - start) train_loader = DataLoader(train_data, batch_size=config.batch, shuffle=True, num_workers=config.cpu_processor, drop_last=True) test_loader = DataLoader(test_data, batch_size=config.batch, shuffle=False, num_workers=config.cpu_processor, drop_last=True)