def test_generator_datashape(self, n, bs): ds = SVHNDataset("test") ds._images = np.random.randint(low=0, high=255, size=(n, 32, 32, 3)) ds.labels = np.random.randint(low=1, high=10, size=(n, 1)) ds_gen = ds.generator(batch_size=bs, flatten=False, ae=False) for i in range(len(ds_gen)): if i == len(ds_gen) - 1: if n % bs == 0: assert (bs, 32, 32, 3) == ds_gen[i][0].shape assert (bs, 1) == ds_gen[i][1].shape else: assert (n % bs, 32, 32, 3) == ds_gen[i][0].shape assert (n % bs, 1) == ds_gen[i][1].shape else: assert (bs, 32, 32, 3) == ds_gen[i][0].shape assert (bs, 1) == ds_gen[i][1].shape
def test_generator_batch(self, n, bs): ds = SVHNDataset("test") ds._images = np.random.randint(low=0, high=255, size=(n, 32, 32, 3)) ds.labels = np.random.randint(low=1, high=10, size=(n, 1)) assert np.ceil(n / bs) == len(ds.generator(batch_size=bs))