def rf_max_depth(): """Run evaluation of different RF max depths""" rf_10 = rf.RF( label = 'RF with max depth 10', preprocessing = hsv_saturation, features = [greyscale_histogram(bins = 64)], n_estimators = 100, max_depth = 10 ) rf_100 = rf.RF( label = 'RF with max depth 100', preprocessing = hsv_saturation, features = [greyscale_histogram(bins = 64)], n_estimators = 100, max_depth = 100 ) rf_250 = rf.RF( label = 'RF with max depth 250', preprocessing = hsv_saturation, features = [greyscale_histogram(bins = 64)], n_estimators = 100, max_depth = 250 ) rf_1000 = rf.RF( label = 'RF with max depth 1000', preprocessing = hsv_saturation, features = [greyscale_histogram(bins = 64)], n_estimators = 100, max_depth = 1000 ) rf_none = rf.RF( label = 'RF with no max depth', preprocessing = hsv_saturation, features = [greyscale_histogram(bins = 64)], n_estimators = 100, max_depth = None ) run_training_and_tests( 'system_selection_3_rf_max_depth', 'kaggle', [ rf_10, rf_100, rf_250, rf_1000, rf_none ], n_iterations = 5, n_images = 10000, training_split = 0.5 )
def rf_forest_size(): """Run evaluation of different RF sizes""" rf_1 = rf.RF( label = 'RF with 1 tree', preprocessing = hsv_saturation, features = [greyscale_histogram(bins = 64)], n_estimators = 1 ) rf_10 = rf.RF( label = 'RF with 10 trees', preprocessing = hsv_saturation, features = [greyscale_histogram(bins = 64)], n_estimators = 10 ) rf_50 = rf.RF( label = 'RF with 50 trees', preprocessing = hsv_saturation, features = [greyscale_histogram(bins = 64)], n_estimators = 50 ) rf_100 = rf.RF( label = 'RF with 100 trees', preprocessing = hsv_saturation, features = [greyscale_histogram(bins = 64)], n_estimators = 100 ) rf_250 = rf.RF( label = 'RF with 250 trees', preprocessing = hsv_saturation, features = [greyscale_histogram(bins = 64)], n_estimators = 250 ) run_training_and_tests( 'system_selection_3_rf_forest_size', 'kaggle', [ rf_1, rf_10, rf_50, rf_100, rf_250 ], n_iterations = 5, n_images = 10000, training_split = 0.5 )
def run_experiment(): """Run experiment one, testing performance on kaggle data""" optimal_svm = svm.SVM(label='Optimised SVM model', preprocessing=hsv_saturation_threshold, features=[haralick], kernel='poly', degree=3) optimal_rf = rf.RF(label='Optimised RF model', preprocessing=hsv_saturation, features=[greyscale_histogram(bins=64)], n_estimators=100, max_depth=100) run_training_and_tests('experiment_1_NLM_performance', 'kaggle', [optimal_rf, optimal_svm], n_iterations=10, n_training_images=5000, n_test_images=20000)
def initial_grey_histogram_bins_evaluation(): """Run evaluation of grey histogram bin sizes""" rf_model_grey2 = rf.RF( label='grey 2 bin RF', preprocessing=[], features=[greyscale_histogram(bins=2)] ) rf_model_grey4 = rf.RF( label='grey 4 bin RF', preprocessing=[], features=[greyscale_histogram(bins=4)] ) rf_model_grey8 = rf.RF( label='grey 8 bin RF', preprocessing=[], features=[greyscale_histogram(bins=8)] ) rf_model_grey16 = rf.RF( label='grey 16 bin RF', preprocessing=[], features=[greyscale_histogram(bins=16)] ) rf_model_grey32 = rf.RF( label='grey 32 bin RF', preprocessing=[], features=[greyscale_histogram(bins=32)] ) rf_model_grey64 = rf.RF( label='grey 64 bin RF', preprocessing=[], features=[greyscale_histogram(bins=64)] ) svm_model_grey2 = svm.SVM( label='grey 2 bin SVM', preprocessing=[], features=[greyscale_histogram(bins=2)] ) svm_model_grey4 = svm.SVM( label='grey 4 bin SVM', preprocessing=[], features=[greyscale_histogram(bins=4)] ) svm_model_grey8 = svm.SVM( label='grey 8 bin SVM', preprocessing=[], features=[greyscale_histogram(bins=8)] ) svm_model_grey16 = svm.SVM( label='grey 16 bin SVM', preprocessing=[], features=[greyscale_histogram(bins=16)] ) svm_model_grey32 = svm.SVM( label='grey 32 bin SVM', preprocessing=[], features=[greyscale_histogram(bins=32)] ) svm_model_grey64 = svm.SVM( label='grey 64 bin SVM', preprocessing=[], features=[greyscale_histogram(bins=64)] ) run_training_and_tests( 'system_selection_1_hist_grey', 'kaggle', [ rf_model_grey2, rf_model_grey4, rf_model_grey8, rf_model_grey16, rf_model_grey32, rf_model_grey64, svm_model_grey2, svm_model_grey4, svm_model_grey8, svm_model_grey16, svm_model_grey32, svm_model_grey64 ], n_iterations=5, n_images=10000, training_split=0.5 )
def hist_hu_moments_haralick_evaluation(): """Run comparative evaluation of hu moments, haralick texture attributes, colour histograms and greyscale histograms """ rf_model_haralick = rf.RF( label='RF with haralick', preprocessing=[], features=[haralick] ) rf_model_hu = rf.RF( label='RF with hu moments', preprocessing=[], features=[hu_moments] ) rf_model_grey_hist = rf.RF( label='RF with grey hist', preprocessing=[], features=[greyscale_histogram(bins=64)] ) rf_model_colour_hist = rf.RF( label='RF with colour hist', preprocessing=[], features=[colour_histogram(bins=16)] ) svm_model_haralick = svm.SVM( label='SVM with haralick', preprocessing=[], features=[haralick] ) svm_model_hu = svm.SVM( label='SVM with hu moments', preprocessing=[], features=[hu_moments] ) svm_model_grey_hist = svm.SVM( label='SVM with grey hist', preprocessing=[], features=[greyscale_histogram(bins=64)] ) svm_model_colour_hist = svm.SVM( label='SVM with colour hist', preprocessing=[], features=[colour_histogram(bins=16)] ) run_training_and_tests( 'system_selection_1_hist_hu_haralick', 'kaggle', [ rf_model_haralick, rf_model_hu, rf_model_grey_hist, rf_model_colour_hist, svm_model_haralick, svm_model_hu, svm_model_grey_hist, svm_model_colour_hist ], n_iterations=5, n_images=10000, training_split=0.5)
def greyscale_histogram_with_filters(): """Run evaluation of greyscale histograms with filters""" rf_model_normal = rf.RF(label='RF with no preprocessing', preprocessing=[], features=[greyscale_histogram(bins=64)]) rf_model_hsv = rf.RF(label='RF with hsv', preprocessing=[hsv_model], features=[greyscale_histogram(bins=64)]) rf_model_hsv_is = rf.RF(label='RF with hsv and isolate saturation', preprocessing=hsv_saturation, features=[greyscale_histogram(bins=64)]) rf_model_hsv_is_thresh = rf.RF( label='RF with hsv, isolate saturation, threshold', preprocessing=hsv_saturation_threshold, features=[greyscale_histogram(bins=64)]) rf_model_hsv_is_c = rf.RF( label='RF with hsv, isolate saturation, contrast', preprocessing=hsv_saturation_contrast, features=[greyscale_histogram(bins=64)]) svm_model_normal = svm.SVM(label='SVM with no preprocessing', preprocessing=[], features=[greyscale_histogram(bins=64)]) svm_model_hsv = svm.SVM(label='SVM with hsv', preprocessing=[hsv_model], features=[greyscale_histogram(bins=64)]) svm_model_hsv_is = svm.SVM(label='SVM with hsv and isolate saturation', preprocessing=hsv_saturation, features=[greyscale_histogram(bins=64)]) svm_model_hsv_is_thresh = svm.SVM( label='SVM with hsv, isolate saturation, threshold', preprocessing=hsv_saturation_threshold, features=[greyscale_histogram(bins=64)]) svm_model_hsv_is_c = svm.SVM( label='SVM with hsv, isolate saturation, contrast', preprocessing=hsv_saturation_contrast, features=[greyscale_histogram(bins=64)]) run_training_and_tests('system_selection_2_grey_hist_preprocessing', 'kaggle', [ rf_model_normal, rf_model_hsv, rf_model_hsv_is, rf_model_hsv_is_c, rf_model_hsv_is_thresh, svm_model_normal, svm_model_hsv, svm_model_hsv_is, svm_model_hsv_is_c, svm_model_hsv_is_thresh, ], n_iterations=5, n_images=10000, training_split=0.5)