def main(): args = parse_args() ids = get_original_video_paths(args.root_dir, basename=True) os.makedirs(os.path.join(args.root_dir, "landmarks"), exist_ok=True) with Pool(processes=os.cpu_count()) as p: with tqdm(total=len(ids)) as pbar: func = partial(save_landmarks, root_dir=args.root_dir) for v in p.imap_unordered(func, ids): pbar.update()
def main(): args = parse_args() originals = get_original_video_paths(args.root_dir, basename=True) with Pool(processes=os.cpu_count() - 4) as p: with tqdm(total=len(originals)) as pbar: for v in p.imap_unordered( partial(write_face_encodings, root_dir=args.root_dir), originals): pbar.update()
def main(): """ This script creates for a given video, a random sample of cropped images. It then uses the python library face_recognition to extract face encodings from each clip and saves these encodings in a file. """ args = parse_args() originals = get_original_video_paths(args.root_dir, basename=True) with Pool(processes=os.cpu_count() - 4) as p: with tqdm(total=len(originals)) as pbar: # imap_unordered: this method chops the iterable into a number of chunks which it submits to the process pool as separate tasks. # the ordering of the results from the returned iterator are considered arbitrary for v in p.imap_unordered(partial(write_face_encodings, root_dir=args.root_dir), originals): pbar.update()
def main(): args = parse_args() originals = get_original_video_paths(args.root_dir) process_videos(originals, args.root_dir, args.detector_type)