예제 #1
0
def basic():
    train, test = preprocessing.prepare_data(True)

    with open('nn_resultsfeaturedrop_nosmote.csv', 'w') as csvfile:
        writer = csv.writer(csvfile)
        # add header
        # vary each parameter of random forest
        split_train, split_labels = preprocessing.split_labels(train)
        split_train, split_labels = preprocessing.apply_smote(
            split_train, split_labels)

        nn_predict(split_train, split_labels, test, writer, {})
def basic():
    train, test = preprocessing.prepare_data(True)
    train = train.drop('Amount', axis=1)
    test = test.drop('Amount', axis=1)

    with open('nn_results.csv', 'w') as csvfile:
        writer = csv.writer(csvfile)
        split_train, split_labels = preprocessing.split_labels(train)
        nn_predict(split_train, split_labels, test, writer)

        split_train, split_labels = preprocessing.apply_smote(
            split_train, split_labels)
        nn_predict(split_train, split_labels, test, writer)
def lr_predict(train, test, preprocessing_type):
    # separate class label (last column)
    train, labels = preprocessing.split_labels(train)

    if preprocessing_type == 'smote':
        train, labels = preprocessing.apply_smote(train, labels)

    classifier = linear_model.LogisticRegression()

    validation.cross_validate(classifier, train, labels)
    classifier.fit(train, labels)

    # test
    test, test_labels = preprocessing.split_labels(test)
    validation.test(classifier, test, test_labels)
예제 #4
0
def svm_predict(train, test, preprocessing_type):
    # separate class label (last column)
    train, labels = preprocessing.split_labels(train)

    if preprocessing_type == 'smote':
        train, labels = preprocessing.apply_smote(train, labels)

    # Classifier
    # Class weight parameter: weights positive class more strongly than negative class.
    # class_weight={1: 2.61, 0: 0.383}
    classifier = svm.SVC(kernel='rbf')

    validation.cross_validate(classifier, train, labels)
    classifier.fit(train, labels)

    # test
    test, test_labels = preprocessing.split_labels(test)
    validation.test(classifier, test, test_labels)
예제 #5
0
def rf_predict(train, test, preprocessing_type, results_file):
    # separate class label
    train, labels = preprocessing.split_labels(train)

    if preprocessing_type == 'smote':
        train, labels = preprocessing.apply_smote(train, labels)

    classifier = ensemble.RandomForestClassifier(class_weight={
        0: 0.75,
        1: 1.5
    },
                                                 min_samples_split=40,
                                                 n_estimators=15)

    classifier.fit(train, labels)

    vresult = validation.cross_validate(classifier, train, labels)

    # test
    test, test_labels = preprocessing.split_labels(test)
    tresult = validation.test(classifier, test, test_labels)

    # save results
    results = []
    results.append("low_skew (0=0.75, 1=1.5)")
    results.append(40)
    results.append(15)
    results.append(vresult['roc_auc'])
    results.append(vresult['precision'])
    results.append(vresult['recall'])
    results.append(vresult['f1'])
    results.append(vresult['fp'])
    results.append(vresult['fn'])

    results.append(tresult['roc_auc'])
    results.append(tresult['precision'])
    results.append(tresult['recall'])
    results.append(tresult['f1'])
    results.append(tresult['fp'])
    results.append(tresult['fn'])

    results_file.writerow(results)
예제 #6
0
spliced_data = data[:, :30]
spliced_target = data[:, 30]

print(spliced_data.shape, spliced_target.shape)

#print(spliced_data)
#print(spliced_target)

xTrain, xTest, yTrain, yTest = model_selection.train_test_split(spliced_data,
                                                                spliced_target,
                                                                test_size=0.2,
                                                                random_state=0)

# applying smote
preprocessing.apply_smote(xTrain, yTrain)

print(xTrain.shape, yTrain.shape)

print("Data loaded...")
print("Training data")
print(xTrain)
print(yTrain)

print("Verification data")
print(xTest)
print(yTest)

print("length of x" + str(len(xTrain)))
print("length of y" + str(len(yTrain)))