def evaluation(): _, test_data, _, _ = preprocessor.load_data() models = ['random', 'frequent'] for model in models: _, test_data, _, _ = preprocessor.load_data() perform, fname = eval_model(test_data, model) print('MODEL:', model, ', accuracy:',perform) print('Result is save at', fname) print('')
def test(): import targetid import etri _, test_data, _, _ = preprocessor.load_data() test = test_data testing = [ test[1] ] fid_result = frame_identifier(testing, 'random') print(fid_result) _, test_data, _, _ = preprocessor.load_data() test = test_data testing = [ test[1] ] fid_result = frame_identifier(testing, 'frequent') print(fid_result)
self.scores = {} self.score(val_data, user_ls) vbf_dict = self.scores results = {u:evaluate_threshold(self.thresh[u], vbf_dict[u]) for u in (user_ls if (user_ls != None) else self.thresh.keys())} return results if __name__=='__main__': from CV import CV from preprocessor import split_samples, load_data, filter_users_val P.np.seterr(all='ignore') all_data, pkd = filter_users_val(split_samples(load_data())) for u in all_data.keys(): if all_data[u] == []: del all_data[u] del pkd[u] gbfa = CV(lambda: GammaBFAuth(all_data), all_data, pkd) with open('./bf_result.csv', 'rw+') as res_file: result_writer = csv.writer(res_file) result_writer.writerow(['user', 'CV_IPR', 'CV_FRR', 'CV_GT', 'CV_IT'])
print('No GPU found. Please use a GPU to train your neural network.') # Number of words in a sequence. # This parameter is used both for training and generating. sequence_length = args.sequence_len try: print("Loading the model...") _, vocab_to_int, int_to_vocab, token_dict = preprocessor.load_preprocess() trained_rnn = preprocessor.load_model('./save/trained_rnn') except: print("Unable to load a checkpoint. Input data needs to be preprocessed.") data_dir = './data/Seinfeld_Scripts.txt' text = preprocessor.load_data(data_dir) int_text, vocab_to_int, int_to_vocab, token_dict = preprocessor.preprocess_and_save_data( data_dir, token_lookup, create_lookup_tables) batch_size = args.batch_size # 32 train_loader = batch_data(int_text, sequence_length, batch_size) print("Training...") #num_epochs = 20 num_epochs = args.n_epochs learning_rate = args.learning_rate #0.0001 vocab_size = len(vocab_to_int) output_size = vocab_size
if __name__=='__main__': """ test_data = {'a' : [coll.defaultdict(list, {'aa' : range(10,100,10), 'ab' : range(1,10)}), coll.defaultdict(list, {'ac' : range(1,10,2), 'aa' : [2,2,2]}), coll.defaultdict(list, {'ad' : range(10, 20, 3)}) ], 'b' : [coll.defaultdict(list, {'ba' : range(1,20,3), 'bb' : range(1,15)}), coll.defaultdict(list, {'bc' : range(2,20,4)}), coll.defaultdict(list, {'bd' : range(50,300,150)}) ], } """ test_data = pp.split_samples(pp.load_data()) for u in test_data.keys(): if u not in {'9999999','SERLHOU'}: del test_data[u] print test_data.keys() test_cv = CV(DensityAuth, test_data) ''' for i in test_cv.partition_data('shit', test_data['a'], 1): f**k.pprint(i) ''' for i in test_cv.validate(): pass print "DONESKI"
from keras.models import load_model from preprocessor import load_data import numpy as np _, VOC = load_data(limit=100) r_VOC = dict(zip(VOC.values(), VOC.keys())) model = load_model('model_title_based.h5') print(VOC) title = '初晴落景 ' title_int = [] for t in title: i = VOC.get(t) if i is None: raise Exception('{} is not in VOC'.format(t)) title_int.append(i) title_int = np.array([title_int]) print(title_int) content = '^' c_index = 1 while content[-1] != '$' and len(content) < 74: c_content = content for i in range(74 - c_index): c_content += ' ' p = [VOC[i] for i in c_content] x = np.array([p])
print('') print('interrupted by user') pass def run(): model = build_graph() train(model, x_train, y_train) model.save(MODEL_FILE_NAME) if __name__ == '__main__': EPOCHS = 80 BATCH_SIZE = 8 NETWORK_SIZE = (2, 256) DATA_SIZE = 10000 CELL_TYPE = 'gru' i = 3 MODEL_FILE_NAME = './models/model'+str(i)+'.h5' CHECKPOINT_WEIGHTS_DIR = './weights/'+str(i) file_path = './data/poetry_add'+str(i)+'.txt' (x_train, y_train), VOC = load_data(file_path) VOC_SIZE = len(VOC) print('training set information:') print('vocabulary size:', VOC_SIZE) print('X shape:', x_train.shape) print('Y shape:', y_train.shape) run()
def load_data(): training, test, training_fe = preprocessor.load_data() #result = training + test result = training + test return result
dest='mode', type='choice', choices=['train', 'test', 'parsing'], default='test') optpr.mode = 'train' # In[3]: print('GPU:', torch.cuda.get_device_name(0), ', # of gpu:(' + str(torch.cuda.device_count()) + ')') print('Torch Version:', torch.version.cuda) # In[4]: training_data, test_data, dev_data, exemplar_data = preprocessor.load_data() # In[5]: preprocessor.data_stat() # In[6]: configuration = { 'token_dim': 60, 'hidden_dim': 64, 'pos_dim': 4, 'lu_dim': 64, 'lu_pos_dim': 5, 'lstm_input_dim': 64, 'lstm_dim': 64,