from progress.bar import Bar import numpy as np px.print_libraries() libs = px.list_libraries() gmt_file = px.load_library(libs[28]) outname = libs[28] correlationFolder = "correlation_100_folder" predictionFolder = "prediction_100_folder" outfolder = "prismxresult_100" px.predict_gmt("gobp_model_100.pkl", gmt_file, correlationFolder, predictionFolder, outfolder, outname, step_size=1000, verbose=True) geneAUC, setAUC = px.benchmarkGMT(gmt_file, correlationFolder, predictionFolder, outfolder + "/" + outname + ".f", verbose=True) fig, ax = plt.subplots(figsize=[4, 16]) violin_parts = ax.violinplot(setAUC.values, range(0, setAUC.shape[1]), points=200, vert=False,
verbose=True) pickle.dump(model, open(lib + "_model_" + str(clusterCount) + ".pkl", 'wb')) outfolder = "prismxresult_" + str(clusterCount) os.makedirs("test_data", exist_ok=True) for lib in genesetlibs[0:2]: for lib2 in genesetlibs[0:6]: outname = lib2 gmt_file = px.load_library(lib2) px.predict_gmt(lib + "_model_" + str(clusterCount) + ".pkl", gmt_file, correlationFolder, predictionFolder, outfolder, outname, step_size=200, intersect=True, verbose=True) # benchmark the prediction quality geneAUC, setAUC = px.benchmarkGMTfast(gmt_file, correlationFolder, predictionFolder, outfolder + "/" + outname + ".f", intersect=True, verbose=True) geneAUC = geneAUC.reset_index() setAUC = setAUC.reset_index() geneAUC.to_feather("test_data/auc_gene_" + lib + "_" + lib2 + ".f") setAUC.to_feather("test_data/auc_set_" + lib + "_" + lib2 + ".f")