예제 #1
0
파일: abs.py 프로젝트: NicholasYY/PRML
    def test_abs(self):
        np.random.seed(1234)
        x = nn.Parameter(np.random.randn(5, 7))
        sign = np.sign(x.value)
        y = nn.abs(x)
        self.assertTrue((y.value == np.abs(x.value)).all())

        for _ in range(10000):
            x.cleargrad()
            y = nn.abs(x)
            nn.square(y - 0.01).sum().backward()
            x.value -= x.grad * 0.001
        self.assertTrue(np.allclose(x.value, 0.01 * sign))
예제 #2
0
    def test_abs(self):
        np.random.seed(1234)
        x = nn.Parameter(np.random.randn(5, 7))
        sign = np.sign(x.value)
        y = nn.abs(x)
        self.assertTrue((y.value == np.abs(x.value)).all())

        for _ in range(10000):
            x.cleargrad()
            y = nn.abs(x)
            nn.square(y - 0.01).sum().backward()
            x.value -= x.grad * 0.001
        self.assertTrue(np.allclose(x.value, 0.01 * sign))
예제 #3
0
    def test_determinant(self):
        A = np.array([[2., 1.], [1., 3.]])
        detA = np.linalg.det(A)
        self.assertTrue((detA == nn.linalg.det(A).value).all())

        A = nn.Parameter(A)
        for _ in range(100):
            A.cleargrad()
            detA = nn.linalg.det(A)
            loss = nn.square(detA - 1)
            loss.backward()
            A.value -= 0.1 * A.grad
        self.assertAlmostEqual(detA.value, 1.)
예제 #4
0
    def test_inverse(self):
        A = np.array([[2., 1.], [1., 3.]])
        Ainv = np.linalg.inv(A)
        self.assertTrue((Ainv == nn.linalg.inv(A).value).all())

        B = np.array([[-1., 1.], [1., 0.5]])
        A = nn.Parameter(np.array([[-0.4, 0.7], [0.7, 0.7]]))
        for _ in range(100):
            A.cleargrad()
            Ainv = nn.linalg.inv(A)
            loss = nn.square(Ainv - B).sum()
            loss.backward()
            A.value -= 0.1 * A.grad

        self.assertTrue(np.allclose(A.value, np.linalg.inv(B)))
예제 #5
0
파일: logdet.py 프로젝트: NicholasYY/PRML
    def test_logdet(self):
        A = np.array([
            [2., 1.],
            [1., 3.]
        ])
        logdetA = np.linalg.slogdet(A)[1]
        self.assertTrue((logdetA == nn.linalg.logdet(A).value).all())

        A = nn.Parameter(A)
        for _ in range(100):
            A.cleargrad()
            logdetA = nn.linalg.logdet(A)
            loss = nn.square(logdetA - 1)
            loss.backward()
            A.value -= 0.1 * A.grad
        self.assertAlmostEqual(logdetA.value, 1)
예제 #6
0
    def test_trace(self):
        arrays = [np.random.normal(size=(2, 2)), np.random.normal(size=(3, 4))]

        for arr in arrays:
            arr = nn.Parameter(arr)
            tr_arr = nn.linalg.trace(arr)
            self.assertEqual(tr_arr.value, np.trace(arr.value))

        a = np.array([[1.5, 0], [-0.1, 1.1]])
        a = nn.Parameter(a)
        for _ in range(100):
            a.cleargrad()
            loss = nn.square(nn.linalg.trace(a) - 2)
            loss.backward()
            a.value -= 0.1 * a.grad
        self.assertEqual(nn.linalg.trace(a).value, 2)
예제 #7
0
    def test_cholesky(self):
        A = np.array([[2., -1], [-1., 5.]])
        L = np.linalg.cholesky(A)
        Ap = nn.Parameter(A)
        L_test = nn.linalg.cholesky(Ap)
        self.assertTrue((L == L_test.value).all())

        T = np.array([[1., 0.], [-1., 2.]])
        for _ in range(1000):
            Ap.cleargrad()
            L_ = nn.linalg.cholesky(Ap)
            loss = nn.square(T - L_).sum()
            loss.backward()
            Ap.value -= 0.1 * Ap.grad

        self.assertTrue(np.allclose(Ap.value, T @ T.T))
예제 #8
0
    def test_solve(self):
        A = np.array([[2., 1.], [1., 3.]])
        B = np.array([1., 2.])[:, None]
        AinvB = np.linalg.solve(A, B)
        self.assertTrue((AinvB == nn.linalg.solve(A, B).value).all())

        A = nn.Parameter(A)
        B = nn.Parameter(B)
        for _ in range(100):
            A.cleargrad()
            B.cleargrad()
            AinvB = nn.linalg.solve(A, B)
            loss = nn.square(AinvB - 1).sum()
            loss.backward()
            A.value -= A.grad
            B.value -= B.grad
        self.assertTrue(np.allclose(AinvB.value, 1))
예제 #9
0
파일: solve.py 프로젝트: NicholasYY/PRML
    def test_solve(self):
        A = np.array([
            [2., 1.],
            [1., 3.]
        ])
        B = np.array([1., 2.])[:, None]
        AinvB = np.linalg.solve(A, B)
        self.assertTrue((AinvB == nn.linalg.solve(A, B).value).all())

        A = nn.Parameter(A)
        B = nn.Parameter(B)
        for _ in range(100):
            A.cleargrad()
            B.cleargrad()
            AinvB = nn.linalg.solve(A, B)
            loss = nn.square(AinvB - 1).sum()
            loss.backward()
            A.value -= A.grad
            B.value -= B.grad
        self.assertTrue(np.allclose(AinvB.value, 1))
예제 #10
0
파일: cholesky.py 프로젝트: NicholasYY/PRML
    def test_cholesky(self):
        A = np.array([
            [2., -1],
            [-1., 5.]
        ])
        L = np.linalg.cholesky(A)
        Ap = nn.Parameter(A)
        L_test = nn.linalg.cholesky(Ap)
        self.assertTrue((L == L_test.value).all())

        T = np.array([
            [1., 0.],
            [-1., 2.]
        ])
        for _ in range(1000):
            Ap.cleargrad()
            L_ = nn.linalg.cholesky(Ap)
            loss = nn.square(T - L_).sum()
            loss.backward()
            Ap.value -= 0.1 * Ap.grad

        self.assertTrue(np.allclose(Ap.value, T @ T.T))
예제 #11
0
파일: inv.py 프로젝트: NicholasYY/PRML
    def test_inverse(self):
        A = np.array([
            [2., 1.],
            [1., 3.]
        ])
        Ainv = np.linalg.inv(A)
        self.assertTrue((Ainv == nn.linalg.inv(A).value).all())

        B = np.array([
            [-1., 1.],
            [1., 0.5]
        ])
        A = nn.Parameter(np.array([
            [-0.4, 0.7],
            [0.7, 0.7]
        ]))
        for _ in range(100):
            A.cleargrad()
            Ainv = nn.linalg.inv(A)
            loss = nn.square(Ainv - B).sum()
            loss.backward()
            A.value -= 0.1 * A.grad

        self.assertTrue(np.allclose(A.value, np.linalg.inv(B)))
예제 #12
0
파일: square.py 프로젝트: NicholasYY/PRML
 def test_sqrt(self):
     x = nn.Parameter(2.)
     y = nn.square(x)
     self.assertEqual(y.value, 4)
     y.backward()
     self.assertEqual(x.grad, 4)
예제 #13
0
 def test_sqrt(self):
     x = nn.Parameter(2.)
     y = nn.square(x)
     self.assertEqual(y.value, 4)
     y.backward()
     self.assertEqual(x.grad, 4)