from problems_01_25.problem_05 import natural_num_division_streak from problems_01_25.plots.useful import array_from_function import matplotlib.pyplot as plt import numpy as np #trying numbers over 18 takes a long time! x = np.arange(1,15) y = array_from_function(x, natural_num_division_streak) plt.plot(x, y, '-') #plot follows a linear pattern when y is log-scaled plt.yscale('log') plt.xlabel('Streak of N-natural numbers required') plt.ylabel('Smallert number that is perfectly divisible') plt.show()
from problems_01_25.problem_02 import even_fibsum from problems_01_25.plots.useful import array_from_function import matplotlib.pyplot as plt import numpy as np # plot the sum of even integers in a # Fibbonicci series where the largest # term is less than the limit below LIMIT = 10000 x = np.arange(0,LIMIT) y = array_from_function(x, even_fibsum) plt.xlabel('Largest term in Fib. Series') plt.ylabel('Sum of terms') plt.title( """ Sum of even terms in a Fibonacci series """ ) plt.plot(x,y, '-') # this graph looks great in a log-log scale! plt.xscale('log') plt.yscale('log') plt.show()
from problems_01_25.problem_03 import largest_prime_factor from problems_01_25.plots.useful import array_from_function import matplotlib.pyplot as plt import numpy as np # plot the largest prime factor for each integer # less than the limit LIMIT = 10000 x = np.arange(0,LIMIT) y = array_from_function(x, largest_prime_factor) plt.xlabel('Integer') plt.ylabel('Largest Prime Divisor') plt.title( """ Largest Prime Divisor of Integers Less Than %s """% LIMIT) plt.plot(x,y, ',') plt.show()