def test_mean_shape(random_process: randprocs.RandomProcess, args0: np.ndarray): """Test whether the mean of the random process has the correct shape.""" if random_process.output_dim == 1: assert random_process.mean(args0).ndim == 1 else: assert random_process.mean(args0).shape[1] == random_process.output_dim
def test_rp_mean_cov_evaluated_matches_rv_mean_cov( random_process: randprocs.RandomProcess, rng: np.random.Generator ): """Check whether the evaluated mean and covariance function of a random process is equivalent to the mean and covariance of the evaluated random process as a random variable.""" x = rng.normal(size=(10, random_process.input_dim)) np.testing.assert_allclose( random_process(x).mean, random_process.mean(x), err_msg=f"Mean of evaluated {repr(random_process)} does not match the " f"random process mean function evaluated.", ) np.testing.assert_allclose( random_process(x).cov, random_process.covmatrix(x), err_msg=f"Covariance of evaluated {repr(random_process)} does not match the " f"random process mean function evaluated.", )
def test_mean_shape(random_process: randprocs.RandomProcess, args0: np.ndarray): """Test whether the mean of the random process has the correct shape.""" expected_shape = args0.shape[:-1] + random_process.output_shape assert random_process.mean(args0).shape == expected_shape