class StatsNordic():
    def __init__(self, events_filename, events_types_filename, log_lvl):
        self.data_name = events_filename.split('.')[0]
        self.processed_data = ProcessedEvents()
        self.processed_data.raw_data.read_data_from_files(
            events_filename, events_types_filename)
        self.processed_data.match_event_processing()

        self.logger = logging.getLogger('Stats Nordic')
        self.logger_console = logging.StreamHandler()
        self.logger.setLevel(log_lvl)
        self.log_format = logging.Formatter(
            '[%(levelname)s] %(name)s: %(message)s')
        self.logger_console.setFormatter(self.log_format)
        self.logger.addHandler(self.logger_console)

    def calculate_stats_preset1(self, start_meas, end_meas):
        self.time_between_events("hid_mouse_event_dongle", EventState.SUBMIT,
                                 "hid_report_sent_event_device",
                                 EventState.SUBMIT, 0.05, start_meas, end_meas)
        self.time_between_events("hid_mouse_event_dongle", EventState.SUBMIT,
                                 "hid_report_sent_event_device",
                                 EventState.SUBMIT, 0.05, start_meas, end_meas)
        self.time_between_events("hid_report_sent_event_dongle",
                                 EventState.SUBMIT,
                                 "hid_report_sent_event_dongle",
                                 EventState.SUBMIT, 0.05, start_meas, end_meas)
        self.time_between_events("hid_mouse_event_dongle", EventState.SUBMIT,
                                 "hid_report_sent_event_dongle",
                                 EventState.SUBMIT, 0.05, start_meas, end_meas)
        self.time_between_events("hid_mouse_event_device", EventState.SUBMIT,
                                 "hid_mouse_event_dongle", EventState.SUBMIT,
                                 0.05, start_meas, end_meas)
        plt.show()

    def _get_timestamps(self, event_name, event_state, start_meas, end_meas):
        event_type_id = self.processed_data.raw_data.get_event_type_id(
            event_name)
        if event_type_id == None:
            self.logger.error("Event name not found: " + event_name)
            return None

        trackings = list(
            filter(lambda x: x.submit.type_id == event_type_id,
                   self.processed_data.tracked_events))

        if type(event_state) is not EventState:
            self.logger.error("Event state should be EventState enum")
            return None

        if event_state == EventState.SUBMIT:
            timestamps = np.fromiter(map(lambda x: x.submit.timestamp,
                                         trackings),
                                     dtype=np.float)
        elif event_state == EventState.PROC_START:
            timestamps = np.fromiter(map(lambda x: x.proc_start_time,
                                         trackings),
                                     dtype=np.float)
        elif event_state == EventState.PROC_END:
            timestamps = np.fromiter(map(lambda x: x.proc_end_time, trackings),
                                     dtype=np.float)

        timestamps = timestamps[np.where((timestamps > start_meas)
                                         & (timestamps < end_meas))]

        return timestamps

    def calculate_times_between(self, start_times, end_times):
        if end_times[0] <= start_times[0]:
            end_times = end_times[1:]
        if len(start_times) > len(end_times):
            start_times = start_times[:-1]

        return (end_times - start_times) * 1000

    def prepare_stats_txt(self, times_between):
        stats_text = "Max time: "
        stats_text += "{0:.3f}".format(max(times_between)) + "ms\n"
        stats_text += "Min time: "
        stats_text += "{0:.3f}".format(min(times_between)) + "ms\n"
        stats_text += "Mean time: "
        stats_text += "{0:.3f}".format(np.mean(times_between)) + "ms\n"
        stats_text += "Std dev of time: "
        stats_text += "{0:.3f}".format(np.std(times_between)) + "ms\n"
        stats_text += "Median time: "
        stats_text += "{0:.3f}".format(np.median(times_between)) + "ms\n"
        stats_text += "Number of records: {}".format(len(times_between)) + "\n"

        return stats_text

    def time_between_events(self,
                            start_event_name,
                            start_event_state,
                            end_event_name,
                            end_event_state,
                            hist_bin_width=0.01,
                            start_meas=0,
                            end_meas=float('inf')):
        self.logger.info("Stats calculating: {}->{}".format(
            start_event_name, end_event_name))
        if not self.processed_data.tracking_execution:
            if start_event_state != EventState.SUBMIT or \
              end_event_state != EventState.SUBMIT:
                self.logger.error("Events processing is not tracked: " + \
                                  start_event_name + "->" + end_event_name)
                return

        start_times = self._get_timestamps(start_event_name, start_event_state,
                                           start_meas, end_meas)
        end_times = self._get_timestamps(end_event_name, end_event_state,
                                         start_meas, end_meas)

        if start_times is None or end_times is None:
            return

        if len(start_times) == 0:
            self.logger.error("No events logged: " + start_event_name)
            return

        if len(end_times) == 0:
            self.logger.error("No events logged: " + stop_event_name)
            return

        if len(start_times) != len(end_times):
            self.logger.error(
                "Number of start_times and end_times is not equal")
            self.logger.error("Got {} start_times and {} end_times".format(
                len(start_times), len(end_times)))

            return

        times_between = self.calculate_times_between(start_times, end_times)
        stats_text = self.prepare_stats_txt(times_between)

        plt.figure()

        ax = plt.gca()
        stats_textbox = ax.text(0.05,
                                0.95,
                                stats_text,
                                transform=ax.transAxes,
                                fontsize=12,
                                verticalalignment='top',
                                bbox=dict(boxstyle='round',
                                          alpha=0.5,
                                          facecolor='linen'))

        plt.xlabel('Duration[ms]')
        plt.ylabel('Number of occurrences')

        event_status_str = {
            EventState.SUBMIT: "submission",
            EventState.PROC_START: "processing start",
            EventState.PROC_END: "processing end"
        }

        title = "From " + start_event_name + ' ' + \
                event_status_str[start_event_state] + "\nto " + \
                end_event_name + ' ' + event_status_str[end_event_state] + \
                ' (' + self.data_name + ')'
        plt.title(title)
        plt.hist(times_between,
                 bins=(int)((max(times_between) - min(times_between)) /
                            hist_bin_width))

        plt.yscale('log')
        plt.grid(True)

        dir_name = "{}{}_{}_{}/".format(OUTPUT_FOLDER, self.data_name,
                                        int(start_meas), int(end_meas))
        if not os.path.exists(dir_name):
            os.makedirs(dir_name)

        plt.savefig(dir_name +
                    title.lower().replace(' ', '_').replace('\n', '_') +
                    '.png')
예제 #2
0
class StatsNordic():
    def __init__(self, events_filename, events_types_filename, log_lvl):
        self.data_name = events_filename.split('.')[0]
        self.processed_data = ProcessedEvents()
        self.processed_data.raw_data.read_data_from_files(
            events_filename, events_types_filename)
        self.processed_data.match_event_processing()
        self.logger = logging.getLogger('Stats Nordic')
        self.logger_console = logging.StreamHandler()
        self.logger.setLevel(log_lvl)
        self.log_format = logging.Formatter(
            '[%(levelname)s] %(name)s: %(message)s')
        self.logger_console.setFormatter(self.log_format)
        self.logger.addHandler(self.logger_console)

    def calculate_stats_preset1(self):
        self.time_between_events("hid_report_sent_event", EventState.PROC_END,
                                 "motion_event", EventState.SUBMIT, 4000)
        self.time_between_events("motion_event", EventState.SUBMIT,
                                 "hid_report_sent_event", EventState.PROC_END,
                                 4000)
        plt.show()

    def _get_timestamps(self, event_name, event_state):
        event_type_id = self.processed_data.raw_data.get_event_type_id(
            event_name)
        if event_type_id == None:
            self.logger.error("Event name not found: " + event_name)
            return None

        trackings = list(
            filter(lambda x: x.submit.type_id == event_type_id,
                   self.processed_data.tracked_events))

        if type(event_state) is not EventState:
            self.logger.error("Event state should be EventState enum")
            return None

        if event_state == EventState.SUBMIT:
            timestamps = list(map(lambda x: x.submit.timestamp, trackings))
        if event_state == EventState.PROC_START:
            timestamps = list(map(lambda x: x.proc_start_time, trackings))
        if event_state == EventState.PROC_END:
            timestamps = list(map(lambda x: x.proc_end_time, trackings))

        return timestamps

    def time_between_events(self, start_event_name, start_event_state,
                            end_event_name, end_event_state, hist_bin_cnt):

        if not self.processed_data.tracking_execution:
            if start_event_state != EventState.SUBMIT or \
              end_event_state != EventState.SUBMIT:
                self.logger.error("Events processing is not tracked: " + \
                                  start_event_name + "->" + end_event_name)
                return

        start_times = self._get_timestamps(start_event_name, start_event_state)
        end_times = self._get_timestamps(end_event_name, end_event_state)

        if start_times is None or end_times is None:
            return

        times_between = []
        for start in start_times:
            for end in end_times:
                if start < end:
                    #converting times to ms - multiply by 1000
                    times_between.append((end - start) * 1000)
                    break

        plt.figure()
        stats_text = "Max time: "
        stats_text += "{0:.3f}".format(max(times_between)) + "ms\n"
        stats_text += "Min time: "
        stats_text += "{0:.3f}".format(min(times_between)) + "ms\n"
        stats_text += "Mean time: "
        stats_text += "{0:.3f}".format(np.mean(times_between)) + "ms\n"

        ax = plt.gca()
        stats_textbox = ax.text(0.05,
                                0.95,
                                stats_text,
                                transform=ax.transAxes,
                                fontsize=12,
                                verticalalignment='top',
                                bbox=dict(boxstyle='round',
                                          alpha=0.5,
                                          facecolor='linen'))

        plt.xlabel('Duration[ms]')
        plt.ylabel('Number of occurences')

        event_status_str = {
            EventState.SUBMIT: "submission",
            EventState.PROC_START: "processing start",
            EventState.PROC_END: "processing end"
        }
        title = "From " + start_event_name + ' ' + \
                event_status_str[start_event_state] + "\nto " + \
                end_event_name + ' ' + event_status_str[end_event_state] + \
                ' (' + self.data_name + ')'
        plt.title(title)

        plt.hist(times_between, bins=hist_bin_cnt)
        plt.yscale('log')
        plt.grid(True)
예제 #3
0
class PlotNordic():
    def __init__(self, log_lvl=logging.WARNING):
        plt.rcParams['toolbar'] = 'None'
        plt.ioff()
        self.plot_config = PlotNordicConfig
        self.draw_state = DrawState(
            self.plot_config['timeline_width_init'],
            self.plot_config['event_processing_rect_height'],
            self.plot_config['event_submit_markersize'])
        self.processed_events = ProcessedEvents()
        self.finish_event = None
        self.submitted_event_type = None

        self.temp_events = []

        self.logger = logging.getLogger('RTT Plot Nordic')
        self.logger_console = logging.StreamHandler()
        self.logger.setLevel(log_lvl)
        self.log_format = logging.Formatter(
            '[%(levelname)s] %(name)s: %(message)s')
        self.logger_console.setFormatter(self.log_format)
        self.logger.addHandler(self.logger_console)

    def read_data_from_files(self, events_filename, events_types_filename):
        self.processed_events.raw_data.read_data_from_files(
            events_filename, events_types_filename)
        if not self.processed_events.raw_data.verify():
            self.logger.warning("Missing event descriptions")

    def write_data_to_files(self, events_filename, events_types_filename):
        self.processed_events.raw_data.write_data_to_files(
            events_filename, events_types_filename)

    def on_click_start_stop(self, event):
        if self.draw_state.paused:
            if self.draw_state.l_line is not None:
                self.draw_state.l_line.remove()
                self.draw_state.l_line = None
                self.draw_state.l_line_coord = None

            if self.draw_state.r_line is not None:
                self.draw_state.r_line.remove()
                self.draw_state.r_line = None
                self.draw_state.r_line_coord = None

            if self.draw_state.duration_marker is not None:
                self.draw_state.duration_marker.remove()

        self.draw_state.paused = not self.draw_state.paused

    def _prepare_plot(self, selected_events_types):

        self.draw_state.ax = plt.gca()
        self.draw_state.ax.set_navigate(False)

        fig = plt.gcf()
        fig.set_size_inches(self.plot_config['window_width_inch'],
                            self.plot_config['window_height_inch'],
                            forward=True)
        fig.canvas.draw()

        plt.xlabel("Time [s]")
        plt.title("Custom events")
        plt.grid(True)

        minimum = selected_events_types[0]
        maximum = selected_events_types[0]
        ticks = []
        labels = []
        for j in selected_events_types:
            if j not in (self.processed_events.event_processing_start_id,
                         self.processed_events.event_processing_end_id):
                if j > maximum:
                    maximum = j
                if j < minimum:
                    minimum = j
                ticks.append(j)
                labels.append(self.processed_events.raw_data.
                              registered_events_types[j].name)
        plt.yticks(ticks, labels)

        # min and max range of y axis are bigger by one so markers fit nicely
        # on plot
        self.draw_state.y_max = maximum + 1
        self.draw_state.y_height = maximum - minimum + 2
        plt.ylim([minimum - 1, maximum + 1])

        self.draw_state.selected_event_textbox = self.draw_state.ax.text(
            0.05,
            0.95,
            self.draw_state.selected_event_text,
            fontsize=10,
            transform=self.draw_state.ax.transAxes,
            verticalalignment='top',
            bbox=dict(boxstyle='round', alpha=0.5, facecolor='linen'))
        self.draw_state.selected_event_textbox.set_visible(False)

        fig.canvas.mpl_connect('scroll_event', self.scroll_event)
        fig.canvas.mpl_connect('button_press_event', self.button_press_event)
        fig.canvas.mpl_connect('button_release_event',
                               self.button_release_event)
        fig.canvas.mpl_connect('resize_event', PlotNordic.resize_event)
        fig.canvas.mpl_connect('close_event', self.close_event)

        plt.tight_layout()

        return fig

    def _get_relative_coords(self, event):
        # relative position of plot - x0, y0, width, height
        ax_loc = self.draw_state.ax.get_position().bounds
        window_size = plt.gcf().get_size_inches() * \
            plt.gcf().dpi  # window size - width, height
        x_rel = (event.x - ax_loc[0] * window_size[0]) \
                 / ax_loc[2] / window_size[0]
        y_rel = (event.y - ax_loc[1] * window_size[1]) \
                 / ax_loc[3] / window_size[1]
        return x_rel, y_rel

    def scroll_event(self, event):
        x_rel, _ = self._get_relative_coords(event)

        if event.button == 'up':
            if self.draw_state.paused:
                self.draw_state.timeline_max = self.draw_state.timeline_max - (1 - x_rel) * \
                    (self.draw_state.timeline_width - self.draw_state.timeline_width *
                     self.plot_config['timeline_scale_factor'])
            self.draw_state.timeline_width = self.draw_state.timeline_width * \
                self.plot_config['timeline_scale_factor']

        if event.button == 'down':
            if self.draw_state.paused:
                self.draw_state.timeline_max = self.draw_state.timeline_max + (1 - x_rel) * \
                    (self.draw_state.timeline_width / self.plot_config['timeline_scale_factor'] -
                     self.draw_state.timeline_width)
            self.draw_state.timeline_width = self.draw_state.timeline_width / \
                self.plot_config['timeline_scale_factor']

        self.draw_state.ax.set_xlim(
            self.draw_state.timeline_max - self.draw_state.timeline_width,
            self.draw_state.timeline_max)
        plt.draw()

    def _find_closest_event(self, x_coord, y_coord):
        if self.processed_events.tracking_execution:
            filtered_id = list(
                filter(lambda x: x.submit.type_id == round(y_coord),
                       self.processed_events.tracked_events))
            if len(filtered_id) == 0:
                return None
            matching_processing = list(
                filter(lambda x: x.proc_start_time < x_coord < x.proc_end_time,
                       filtered_id))
            if matching_processing:
                return matching_processing[0]
            dists = list(
                map(
                    lambda x: min([
                        abs(x.submit.timestamp - x_coord),
                        abs(x.proc_start_time - x_coord),
                        abs(x.proc_end_time - x_coord)
                    ]), filtered_id))
            return filtered_id[np.argmin(dists)]
        else:
            filtered_id = list(
                filter(lambda x: x.type_id == round(y_coord),
                       self.processed_events.raw_data.events))
            if len(filtered_id) == 0:
                return None
            dists = list(map(lambda x: abs(x.timestamp - x_coord),
                             filtered_id))
            return filtered_id[np.argmin(dists)]

    @staticmethod
    def _stringify_time(time_seconds):
        if time_seconds > 0.1:
            return '%.5f' % (time_seconds) + ' s'

        return '%.5f' % (1000 * time_seconds) + ' ms'

    def button_press_event(self, event):
        x_rel, y_rel = self._get_relative_coords(event)

        if event.button == MouseButton.LEFT.value:
            self.draw_state.pan_x_start1 = x_rel

        if event.button == MouseButton.MIDDLE.value:
            if self.draw_state.selected_event_submit is not None:
                for i in self.draw_state.selected_event_submit:
                    i.remove()
                self.draw_state.selected_event_submit = None

            if self.draw_state.selected_event_processing is not None:
                self.draw_state.selected_event_processing.remove()
                self.draw_state.selected_event_processing = None

            self.draw_state.selected_event_textbox.set_visible(False)

            if x_rel > 1 or x_rel < 0 or y_rel > 1 or y_rel < 0:
                plt.draw()
                return

            coord_x = self.draw_state.timeline_max - \
                (1 - x_rel) * self.draw_state.timeline_width
            coord_y = self.draw_state.y_max - \
                (1 - y_rel) * self.draw_state.y_height
            selected_event = self._find_closest_event(coord_x, coord_y)
            if selected_event is None:
                return

            if self.processed_events.tracking_execution:
                event_submit = selected_event.submit
            else:
                event_submit = selected_event

            self.draw_state.selected_event_submit = self.draw_state.ax.plot(
                event_submit.timestamp,
                event_submit.type_id,
                markersize=2 * self.draw_state.event_submit_markersize,
                color='g',
                marker='o',
                linestyle=' ')

            if self.processed_events.tracking_execution:
                self.draw_state.selected_event_processing = matplotlib.patches.Rectangle(
                    (selected_event.proc_start_time,
                     selected_event.submit.type_id -
                     self.draw_state.event_processing_rect_height),
                    selected_event.proc_end_time -
                    selected_event.proc_start_time,
                    2 * self.draw_state.event_processing_rect_height,
                    color='g')
                self.draw_state.ax.add_artist(
                    self.draw_state.selected_event_processing)

            self.draw_state.selected_event_text = \
                self.processed_events.raw_data.registered_events_types[event_submit.type_id].name + '\n'
            self.draw_state.selected_event_text += 'Submit: ' + \
                PlotNordic._stringify_time(event_submit.timestamp) + '\n'
            if self.processed_events.tracking_execution:
                self.draw_state.selected_event_text += 'Processing start: ' + \
                    PlotNordic._stringify_time(
                        selected_event.proc_start_time) + '\n'
                self.draw_state.selected_event_text += 'Processing end: ' + \
                    PlotNordic._stringify_time(
                        selected_event.proc_end_time) + '\n'
                self.draw_state.selected_event_text += 'Processing time: ' + \
                    PlotNordic._stringify_time(selected_event.proc_end_time - \
                        selected_event.proc_start_time) + '\n'

            ev_type = self.processed_events.raw_data.registered_events_types[
                event_submit.type_id]

            for i in range(0, len(ev_type.data_descriptions)):
                if ev_type.data_descriptions[i] == 'mem_address':
                    continue
                self.draw_state.selected_event_text += ev_type.data_descriptions[
                    i] + ' = '
                self.draw_state.selected_event_text += str(
                    event_submit.data[i]) + '\n'

            self.draw_state.selected_event_textbox.set_visible(True)
            self.draw_state.selected_event_textbox.set_text(
                self.draw_state.selected_event_text)

            plt.draw()

        if event.button == MouseButton.RIGHT.value:
            self.draw_state.pan_x_start2 = x_rel

    def button_release_event(self, event):
        x_rel, y_rel = self._get_relative_coords(event)

        if event.button == MouseButton.LEFT.value:
            if self.draw_state.paused:
                if abs(x_rel - self.draw_state.pan_x_start1) < 0.01:
                    if self.draw_state.l_line is not None:
                        self.draw_state.l_line.remove()
                        self.draw_state.l_line = None
                        self.draw_state.l_line_coord = None

                    if 0 <= x_rel <= 1:
                        if 0 <= y_rel <= 1:
                            self.draw_state.l_line_coord = self.draw_state.timeline_max - \
                                (1 - x_rel) * self.draw_state.timeline_width
                            self.draw_state.l_line = plt.axvline(
                                self.draw_state.l_line_coord)
                    plt.draw()

                else:
                    self.draw_state.timeline_max = self.draw_state.timeline_max - \
                        (x_rel - self.draw_state.pan_x_start1) * \
                        self.draw_state.timeline_width
                    self.draw_state.ax.set_xlim(
                        self.draw_state.timeline_max -
                        self.draw_state.timeline_width,
                        self.draw_state.timeline_max)
                    plt.draw()

        if event.button == MouseButton.RIGHT.value:
            if self.draw_state.paused:
                if abs(x_rel - self.draw_state.pan_x_start2) < 0.01:
                    if self.draw_state.r_line is not None:
                        self.draw_state.r_line.remove()
                        self.draw_state.r_line = None
                        self.draw_state.r_line_coord = None

                    if 0 <= x_rel <= 1:
                        if 0 <= y_rel <= 1:
                            self.draw_state.r_line_coord = self.draw_state.timeline_max - \
                                (1 - x_rel) * self.draw_state.timeline_width
                            self.draw_state.r_line = plt.axvline(
                                self.draw_state.r_line_coord, color='r')
                    plt.draw()

        if self.draw_state.r_line_coord is not None and self.draw_state.l_line_coord is not None:
            if self.draw_state.duration_marker is not None:
                self.draw_state.duration_marker.remove()
            bigger_coord = max(self.draw_state.r_line_coord,
                               self.draw_state.l_line_coord)
            smaller_coord = min(self.draw_state.r_line_coord,
                                self.draw_state.l_line_coord)
            self.draw_state.duration_marker = plt.annotate(
                s=PlotNordic._stringify_time(bigger_coord - smaller_coord),
                xy=(smaller_coord, 0.5),
                xytext=(bigger_coord, 0.5),
                arrowprops=dict(arrowstyle='<->'))
        else:
            if self.draw_state.duration_marker is not None:
                self.draw_state.duration_marker.remove()
                self.draw_state.duration_marker = None

    @staticmethod
    def resize_event(event):
        plt.tight_layout()

    def close_event(self, event):
        if self.finish_event is not None:
            self.finish_event.set()
        plt.close('all')
        sys.exit()

    def animate_events_real_time(self, fig, selected_events_types, one_line):
        rects = []
        events = []
        xranges = []
        for i in range(0, len(selected_events_types)):
            xranges.append([])
        while not self.queue.empty():
            event = self.queue.get()
            if event is None:
                self.logger.info("Stopped collecting new events")
                self.close_event(None)

            if self.processed_events.tracking_execution:
                if event.type_id == self.processed_events.event_processing_start_id:
                    self.processed_events.start_event = event
                    for i in range(len(self.temp_events) - 1, -1, -1):
                        # comparing memory addresses of event processing start
                        # and event submit to identify matching events
                        if self.temp_events[i].data[
                                0] == self.processed_events.start_event.data[
                                    0]:
                            self.processed_events.submit_event = self.temp_events[
                                i]
                            events.append(self.temp_events[i])
                            self.submitted_event_type = self.processed_events.submit_event.type_id
                            del self.temp_events[i]
                            break

                elif event.type_id == self.processed_events.event_processing_end_id:
                    # comparing memory addresses of event processing start and
                    # end to identify matching events
                    if self.submitted_event_type is not None and event.data[0] \
                             == self.processed_events.start_event.data[0]:
                        rects.append(
                            matplotlib.patches.Rectangle(
                                (self.processed_events.start_event.timestamp,
                                 self.processed_events.submit_event.type_id -
                                 self.draw_state.event_processing_rect_height /
                                 2),
                                event.timestamp -
                                self.processed_events.start_event.timestamp,
                                self.draw_state.event_processing_rect_height,
                                edgecolor='black'))
                        self.processed_events.tracked_events.append(
                            TrackedEvent(
                                self.processed_events.submit_event,
                                self.processed_events.start_event.timestamp,
                                event.timestamp))
                        self.submitted_event_type = None
                else:
                    self.temp_events.append(event)
                    if event.timestamp > time.time() - self.start_time + self.draw_state.added_time - \
                            0.2 * self.draw_state.timeline_width:
                        self.draw_state.added_time += 0.05

                    if event.timestamp < time.time() - self.start_time + self.draw_state.added_time - \
                            0.8 * self.draw_state.timeline_width:
                        self.draw_state.added_time -= 0.05

                    events.append(event)
            else:
                events.append(event)
                self.processed_events.raw_data.events.append(event)

        # translating plot
        if not self.draw_state.synchronized_with_events:
            # ignore translating plot for stale events
            if not self.draw_state.stale_events_displayed:
                self.draw_state.stale_events_displayed = True
            else:
                # translate plot for new events
                if len(events) != 0:
                    self.draw_state.added_time = events[-1].timestamp - \
                                                   0.3 * self.draw_state.timeline_width
                    self.draw_state.synchronized_with_events = True

        if not self.draw_state.paused:
            self.draw_state.timeline_max = time.time() - self.start_time + \
                self.draw_state.added_time
            self.draw_state.ax.set_xlim(
                self.draw_state.timeline_max - self.draw_state.timeline_width,
                self.draw_state.timeline_max)

        # plotting events
        y = list(map(lambda x: x.type_id, events))
        x = list(map(lambda x: x.timestamp, events))
        self.draw_state.ax.plot(
            x,
            y,
            marker='o',
            linestyle=' ',
            color='r',
            markersize=self.draw_state.event_submit_markersize)

        self.draw_state.ax.add_collection(PatchCollection(rects))
        plt.gcf().canvas.flush_events()

    def plot_events_real_time(self,
                              queue,
                              finish_event,
                              selected_events_types=None,
                              one_line=False):
        self.start_time = time.time()
        self.queue = queue

        self.finish_event = finish_event
        self.processed_events.raw_data.registered_events_types = queue.get()

        self.processed_events.match_event_processing()
        if selected_events_types is None:
            selected_events_types = list(
                self.processed_events.raw_data.registered_events_types.keys())

        self.processed_events.event_processing_start_id = \
            self.processed_events.raw_data.get_event_type_id('event_processing_start')
        self.processed_events.event_processing_end_id = \
            self.processed_events.raw_data.get_event_type_id('event_processing_end')

        if (self.processed_events.event_processing_start_id is None) or (
                self.processed_events.event_processing_end_id is None):
            self.processed_events.tracking_execution = False
        fig = self._prepare_plot(selected_events_types)

        self.start_stop_ax = plt.axes([0.8, 0.025, 0.1, 0.04])
        self.start_stop_button = Button(self.start_stop_ax, 'Start/Stop')
        self.start_stop_button.on_clicked(self.on_click_start_stop)
        plt.sca(self.draw_state.ax)

        self.ani = animation.FuncAnimation(
            fig,
            self.animate_events_real_time,
            fargs=[selected_events_types, one_line],
            interval=self.plot_config['refresh_time'])
        plt.show()

    def plot_events_from_file(self,
                              selected_events_types=None,
                              one_line=False):
        self.draw_state.paused = True
        if len(self.processed_events.raw_data.events) == 0 or \
                len(self.processed_events.raw_data.registered_events_types) == 0:
            self.logger.error("Please read some events data before plotting")

        if selected_events_types is None:
            selected_events_types = list(
                self.processed_events.raw_data.registered_events_types.keys())

        self.processed_events.match_event_processing()
        self._prepare_plot(selected_events_types)

        x = list(
            map(lambda x: x.submit.timestamp,
                self.processed_events.tracked_events))
        y = list(
            map(lambda x: x.submit.type_id,
                self.processed_events.tracked_events))
        self.draw_state.ax.plot(
            x,
            y,
            marker='o',
            linestyle=' ',
            color='r',
            markersize=self.draw_state.event_submit_markersize)

        if self.processed_events.tracking_execution:
            rects = []
            for ev in self.processed_events.tracked_events:
                rects.append(
                    matplotlib.patches.Rectangle(
                        (ev.proc_start_time, ev.submit.type_id -
                         self.draw_state.event_processing_rect_height / 2),
                        ev.proc_end_time - ev.proc_start_time,
                        self.draw_state.event_processing_rect_height,
                        edgecolor='black'))

            self.draw_state.ax.add_collection(PatchCollection(rects))

        self.draw_state.timeline_max = max(x) + 1
        self.draw_state.timeline_width = max(x) - min(x) + 2
        self.draw_state.ax.set_xlim([min(x) - 1, max(x) + 1])

        plt.draw()
        plt.show()