예제 #1
0
def main(args):
    # parse arguments
    model_path = args.path
    save = args.save

    # ============= LOAD MODEL AND PREPROCESSING CONFIGURATION ================

    # load model and info
    model, info, _ = utils.load_model_HDF5(model_path)
    # set parameters
    input_directory = info["data"]["input_directory"]
    architecture = info["model"]["architecture"]
    loss = info["model"]["loss"]
    rescale = info["preprocessing"]["rescale"]
    shape = info["preprocessing"]["shape"]
    color_mode = info["preprocessing"]["color_mode"]
    vmin = info["preprocessing"]["vmin"]
    vmax = info["preprocessing"]["vmax"]
    nb_validation_images = info["data"]["nb_validation_images"]

    # =================== LOAD VALIDATION PARAMETERS =========================

    model_dir_name = os.path.basename(str(Path(model_path).parent))
    finetune_dir = os.path.join(
        os.getcwd(),
        "results",
        input_directory,
        architecture,
        loss,
        model_dir_name,
        "finetuning",
    )
    subdirs = os.listdir(finetune_dir)
    for subdir in subdirs:
        logger.info("testing with finetuning parameters from \n{}...".format(
            os.path.join(finetune_dir, subdir)))
        try:
            with open(
                    os.path.join(finetune_dir, subdir,
                                 "finetuning_result.json"), "r") as read_file:
                validation_result = json.load(read_file)
        except FileNotFoundError:
            logger.warning("run finetune.py before testing.\nexiting script.")
            sys.exit()

        min_area = validation_result["best_min_area"]
        threshold = validation_result["best_threshold"]
        method = validation_result["method"]
        dtype = validation_result["dtype"]

        # ====================== PREPROCESS TEST IMAGES ==========================

        # get the correct preprocessing function
        preprocessing_function = get_preprocessing_function(architecture)

        # initialize preprocessor
        preprocessor = Preprocessor(
            input_directory=input_directory,
            rescale=rescale,
            shape=shape,
            color_mode=color_mode,
            preprocessing_function=preprocessing_function,
        )

        # get test generator
        nb_test_images = preprocessor.get_total_number_test_images()
        test_generator = preprocessor.get_test_generator(
            batch_size=nb_test_images, shuffle=False)

        # retrieve test images from generator
        imgs_test_input = test_generator.next()[0]

        # retrieve test image names
        filenames = test_generator.filenames

        # predict on test images
        imgs_test_pred = model.predict(imgs_test_input)

        # instantiate TensorImages object
        tensor_test = postprocessing.TensorImages(
            imgs_input=imgs_test_input,
            imgs_pred=imgs_test_pred,
            vmin=vmin,
            vmax=vmax,
            method=method,
            dtype=dtype,
            filenames=filenames,
        )

        # ====================== CLASSIFICATION ==========================

        # retrieve ground truth
        y_true = get_true_classes(filenames)

        # predict classes on test images
        y_pred = predict_classes(resmaps=tensor_test.resmaps,
                                 min_area=min_area,
                                 threshold=threshold)

        # confusion matrix
        tnr, fp, fn, tpr = confusion_matrix(y_true, y_pred,
                                            normalize="true").ravel()

        # initialize dictionary to store test results
        test_result = {
            "min_area": min_area,
            "threshold": threshold,
            "TPR": tpr,
            "TNR": tnr,
            "score": (tpr + tnr) / 2,
            "method": method,
            "dtype": dtype,
        }

        # ====================== SAVE TEST RESULTS =========================

        # create directory to save test results
        save_dir = os.path.join(
            os.getcwd(),
            "results",
            input_directory,
            architecture,
            loss,
            model_dir_name,
            "test",
            subdir,
        )

        if not os.path.isdir(save_dir):
            os.makedirs(save_dir)

        # save test result
        with open(os.path.join(save_dir, "test_result.json"),
                  "w") as json_file:
            json.dump(test_result, json_file, indent=4, sort_keys=False)

        # save classification of image files in a .txt file
        classification = {
            "filenames": filenames,
            "predictions": y_pred,
            "truth": y_true,
            "accurate_predictions": np.array(y_true) == np.array(y_pred),
        }
        df_clf = pd.DataFrame.from_dict(classification)
        with open(os.path.join(save_dir, "classification.txt"), "w") as f:
            f.write(
                "min_area = {}, threshold = {}, method = {}, dtype = {}\n\n".
                format(min_area, threshold, method, dtype))
            f.write(df_clf.to_string(header=True, index=True))

        # print classification results to console
        with pd.option_context("display.max_rows", None, "display.max_columns",
                               None):
            print(df_clf)

        # save segmented resmaps
        if save:
            save_segmented_images(tensor_test.resmaps, threshold, filenames,
                                  save_dir)

        # print test_results to console
        print("test results: {}".format(test_result))
예제 #2
0
def main(args):

    # get parsed arguments from user
    input_dir = args.input_dir
    architecture = args.architecture
    color_mode = args.color
    loss = args.loss
    batch_size = args.batch

    # check arguments
    check_arguments(architecture, color_mode, loss)

    # get autoencoder
    autoencoder = AutoEncoder(input_dir, architecture, color_mode, loss,
                              batch_size)

    # load data as generators that yield batches of preprocessed images
    preprocessor = Preprocessor(
        input_directory=input_dir,
        rescale=autoencoder.rescale,
        shape=autoencoder.shape,
        color_mode=autoencoder.color_mode,
        preprocessing_function=autoencoder.preprocessing_function,
    )
    train_generator = preprocessor.get_train_generator(
        batch_size=autoencoder.batch_size, shuffle=True)
    validation_generator = preprocessor.get_val_generator(
        batch_size=autoencoder.batch_size, shuffle=True)

    # find best learning rates for training
    autoencoder.find_opt_lr(train_generator, validation_generator)

    # train
    autoencoder.fit()

    # save model
    autoencoder.save()

    if args.inspect:
        # -------------- INSPECTING VALIDATION IMAGES --------------
        logger.info("generating inspection plots of validation images...")

        # create a directory to save inspection plots
        inspection_val_dir = os.path.join(autoencoder.save_dir,
                                          "inspection_val")
        if not os.path.isdir(inspection_val_dir):
            os.makedirs(inspection_val_dir)

        inspection_val_generator = preprocessor.get_val_generator(
            batch_size=autoencoder.learner.val_data.samples, shuffle=False)

        imgs_val_input = inspection_val_generator.next()[0]
        filenames_val = inspection_val_generator.filenames

        # get reconstructed images (i.e predictions) on validation dataset
        logger.info("reconstructing validation images...")
        imgs_val_pred = autoencoder.model.predict(imgs_val_input)

        # convert to grayscale if RGB
        if color_mode == "rgb":
            imgs_val_input = tf.image.rgb_to_grayscale(imgs_val_input).numpy()
            imgs_val_pred = tf.image.rgb_to_grayscale(imgs_val_pred).numpy()

        # remove last channel since images are grayscale
        imgs_val_input = imgs_val_input[:, :, :, 0]
        imgs_val_pred = imgs_val_pred[:, :, :, 0]

        # instantiate TensorImages object to compute validation resmaps
        tensor_val = postprocessing.TensorImages(
            imgs_input=imgs_val_input,
            imgs_pred=imgs_val_pred,
            vmin=autoencoder.vmin,
            vmax=autoencoder.vmax,
            method=autoencoder.loss,
            dtype="float64",
            filenames=filenames_val,
        )

        # generate and save inspection validation plots
        tensor_val.generate_inspection_plots(group="validation",
                                             save_dir=inspection_val_dir)

        # -------------- INSPECTING TEST IMAGES --------------
        logger.info("generating inspection plots of test images...")

        # create a directory to save inspection plots
        inspection_test_dir = os.path.join(autoencoder.save_dir,
                                           "inspection_test")
        if not os.path.isdir(inspection_test_dir):
            os.makedirs(inspection_test_dir)

        nb_test_images = preprocessor.get_total_number_test_images()

        inspection_test_generator = preprocessor.get_test_generator(
            batch_size=nb_test_images, shuffle=False)

        imgs_test_input = inspection_test_generator.next()[0]
        filenames_test = inspection_test_generator.filenames

        # get reconstructed images (i.e predictions) on validation dataset
        logger.info("reconstructing test images...")
        imgs_test_pred = autoencoder.model.predict(imgs_test_input)

        # convert to grayscale if RGB
        if color_mode == "rgb":
            imgs_test_input = tf.image.rgb_to_grayscale(
                imgs_test_input).numpy()
            imgs_test_pred = tf.image.rgb_to_grayscale(imgs_test_pred).numpy()

        # remove last channel since images are grayscale
        imgs_test_input = imgs_test_input[:, :, :, 0]
        imgs_test_pred = imgs_test_pred[:, :, :, 0]

        # instantiate TensorImages object to compute test resmaps
        tensor_test = postprocessing.TensorImages(
            imgs_input=imgs_test_input,
            imgs_pred=imgs_test_pred,
            vmin=autoencoder.vmin,
            vmax=autoencoder.vmax,
            method=autoencoder.loss,
            dtype="float64",
            filenames=filenames_test,
        )

        # generate and save inspection test plots
        tensor_test.generate_inspection_plots(group="test",
                                              save_dir=inspection_test_dir)

    logger.info("done.")
    return
def inspect_images(model_path):
    # load model for inspection
    logger.info("loading model for inspection...")
    model, info, _ = utils.load_model_HDF5(model_path)
    save_dir = os.path.dirname(model_path)

    input_dir = info["data"]["input_directory"]
    # architecture = info["model"]["architecture"]
    # loss = info["model"]["loss"]
    rescale = info["preprocessing"]["rescale"]
    shape = info["preprocessing"]["shape"]
    color_mode = info["preprocessing"]["color_mode"]
    vmin = info["preprocessing"]["vmin"]
    vmax = info["preprocessing"]["vmax"]
    nb_validation_images = info["data"]["nb_validation_images"]

    # instantiate preprocessor object to preprocess validation and test inspection images
    preprocessor = Preprocessor(
        input_directory=input_dir,
        rescale=rescale,
        shape=shape,
        color_mode=color_mode,
    )

    # -------------- INSPECTING VALIDATION IMAGES --------------
    logger.info("generating inspection plots for validation images...")

    inspection_val_generator = preprocessor.get_val_generator(
        batch_size=nb_validation_images, shuffle=False)

    imgs_val_input = inspection_val_generator.next()[0]
    filenames_val = inspection_val_generator.filenames

    # get indices of validation inspection images
    val_insp_i = [
        filenames_val.index(filename)
        for filename in config.FILENAMES_VAL_INSPECTION
    ]
    imgs_val_input = imgs_val_input[val_insp_i]

    # reconstruct validation inspection images (i.e predict)
    imgs_val_pred = model.predict(imgs_val_input)

    # instantiate ResmapPlotter object to compute resmaps
    postproc_val = postprocessing.ResmapPlotter(
        imgs_input=imgs_val_input,
        imgs_pred=imgs_val_pred,
        filenames=config.FILENAMES_VAL_INSPECTION,
        color="grayscale",
        vmin=vmin,
        vmax=vmax,
    )

    # generate resmaps and save
    fig_res_val = postproc_val.generate_inspection_figure()
    fig_res_val.savefig(os.path.join(save_dir, "fig_insp_val.svg"))

    # -------------- INSPECTING TEST IMAGES --------------
    logger.info("generating inspection plots for test images...")

    nb_test_images = preprocessor.get_total_number_test_images()

    inspection_test_generator = preprocessor.get_test_generator(
        batch_size=nb_test_images, shuffle=False)
    # get preprocessed test images
    imgs_test_input = inspection_test_generator.next()[0]
    filenames_test = inspection_test_generator.filenames

    # get indices of test inspection images
    test_insp_i = [
        filenames_test.index(filename)
        for filename in config.FILENAMES_TEST_INSPECTION
    ]
    imgs_test_input = imgs_test_input[test_insp_i]

    # reconstruct inspection test images (i.e predict)
    imgs_test_pred = model.predict(imgs_test_input)

    # instantiate ResmapPlotter object to compute resmaps
    postproc_test = postprocessing.ResmapPlotter(
        imgs_input=imgs_test_input,
        imgs_pred=imgs_test_pred,
        filenames=config.FILENAMES_TEST_INSPECTION,
        color="grayscale",
        vmin=vmin,
        vmax=vmax,
    )

    # generate resmaps and save
    fig_res_test = postproc_test.generate_inspection_figure()
    fig_res_test.savefig(os.path.join(save_dir, "fig_insp_test.svg"))

    # --------------------------------------------------

    # fig_score_insp = postproc_test.generate_score_scatter_plot(
    #     inspection_test_generator, model_path, filenames_test_insp
    # )
    # fig_score_insp.savefig(os.path.join(save_dir, "fig_score_insp.svg"))

    # fig_score_test = postproc_test.generate_score_scatter_plot(
    #     inspection_test_generator, model_path
    # )
    # fig_score_test.savefig(os.path.join(save_dir, "fig_score_test.svg"))
    return