from progapy.factories.json2gp import load_json, build_gp_from_json from progapy.viewers.view_1d import view as view_this_gp import pylab as pp import numpy as np problem_params = load_default_params() problem = Problem( problem_params, force_init = True ) nbr_samples = 5000 #epsilon = 0.5 epsilon = 0.1 filename = "./examples/exponential_problem/gp.json" json_gp = load_json( filename ) gp = build_gp_from_json( json_gp ) pgp = ProductGaussianProcess( [gp] ) surrogate_params = {} surrogate_params["gp"] = pgp surrogate = Surrogate( surrogate_params ) response_model_params = {"surrogate":surrogate} acquistion_params = {} kernel_params = {} #kernel_params["lower_epsilon"] = -np.inf #kernel_params["upper_epsilon"] = epsilon kernel_params["epsilon"] = epsilon state_params = {}
print "RANDOM SEED" np.random.seed(0) nbr_samples = 2000 reject_epsilon = 3.0 n_reject = 50 nbr_thetas = 6 nbr_stats = 10 filename = "./examples/blowfly/gp.json" gps = [] for gp_idx in range(nbr_stats): fn = "./examples/blowfly/p%dgp.json" % ((gp_idx + 1)) json_gp = load_json(fn) #json_gp["kernel"]["type"]="squared_exponential" gp = build_gp_from_json(json_gp) gp.kernel.shrink_length_scales(0.5) #gp.precomputes() gps.append(gp) pgp = ProductGaussianProcess(gps) #assert False surrogate_params = {} surrogate_params["gp"] = pgp surrogate_params["obs_statistics"] = state_params["obs_statistics"] surrogate_params["epsilon"] = 0.0 rej_state_params = state_params.copy() rej_state_params["S"] = 1 rej_state = RejectState(None, rej_state_params)
from progapy.gps.product_gaussian_process import ProductGaussianProcess from progapy.factories.json2gp import load_json, build_gp_from_json from progapy.viewers.view_1d import view as view_this_gp import pylab as pp import numpy as np problem_params = load_default_params() problem = Problem(problem_params, force_init=True) nbr_samples = 5000 #epsilon = 0.5 epsilon = 0.1 filename = "./examples/exponential_problem/gp.json" json_gp = load_json(filename) gp = build_gp_from_json(json_gp) pgp = ProductGaussianProcess([gp]) surrogate_params = {} surrogate_params["gp"] = pgp surrogate = Surrogate(surrogate_params) response_model_params = {"surrogate": surrogate} acquistion_params = {} kernel_params = {} #kernel_params["lower_epsilon"] = -np.inf #kernel_params["upper_epsilon"] = epsilon kernel_params["epsilon"] = epsilon state_params = {}
print "RANDOM SEED" np.random.seed(0) nbr_samples = 15000 reject_epsilon = 3.0 n_reject = 100 nbr_thetas = 6 nbr_stats = 10 filename = "./examples/blowfly/gp.json" gps = [] for gp_idx in range( nbr_stats ): fn = "./examples/blowfly/p%dgp.json"%((gp_idx+1)) #json_gp = load_json( filename ) json_gp = load_json( fn ) #json_gp["kernel"]["type"]="squared_exponential" gp = build_gp_from_json( json_gp ) gps.append( gp ) pgp = ProductGaussianProcess( gps) #assert False surrogate_params = {} surrogate_params["gp"] = pgp surrogate_params["epsilon"] = 0.5 surrogate_params["obs_statistics"] = state_params["obs_statistics"] rej_state_params = state_params.copy() rej_state_params["S"] = 1 rej_state = RejectState(None, rej_state_params ) recorder = Recorder(record_stats=True)