예제 #1
0
def show_chart():
    strategy = settings["Strategy"]
    deltaDays = settings['deltaDays']
    filename = settings['configFilename']
    configjs = Settings.get_configjs(filename)
    watch = settings["watch"]
    dateset = gekkoWrapper.getAvailableDataset(watch)
    daterange = coreFunctions.getRandomDateRange(dateset, deltaDays=deltaDays)
    res = evolution_bayes.EvaluateRaw(watch, daterange, configjs[strategy], strategy)
    #res = gekkoWrapper.httpPost(URL, gekkoConfig)

    show_candles(res, configjs[strategy])
예제 #2
0
파일: chart.py 프로젝트: GO1984/japonicus
def show_chart():
    strategy = settings["Strategy"]
    deltaDays = settings['deltaDays']
    filename = settings['configFilename']
    configjs = Settings.get_configjs(filename)
    watch = settings["watch"]
    dateset = gekkoWrapper.getAvailableDataset(watch)
    daterange = resultInterface.getRandomDateRange(dateset, deltaDays=deltaDays)
    res = evolution_bayes.EvaluateRaw(watch, daterange, configjs[strategy], strategy)
    #res = gekkoWrapper.httpPost(URL, gekkoConfig)

    show_candles(res, configjs[strategy])
예제 #3
0
def gekko_bayesian(indicator=None):
    print("")
    global Strategy
    Strategy = indicator

    watch = settings["watch"]
    global DatasetRange
    DatasetRange = gekkoWrapper.getAvailableDataset(watch)

    if indicator == None:
        Strategy = settings['Strategy']
    print("Starting search %s parameters" % Strategy)
    bo = BayesianOptimization(gekko_search, copy.deepcopy(StratConfig))

    # 1st Evaluate
    print("")
    print("Step 1: BayesianOptimization parameter search")
    bo.maximize(init_points=settings['init_points'],
                n_iter=settings['num_iter'])
    max_val = bo.res['max']['max_val']
    index = all_val.index(max_val)
    s1 = stats[index]

    # 2nd Evaluate
    print("")
    print("Step 2: testing searched parameters on random date")
    chosenRange = gekkoWrapper.getAvailableDataset()
    DateRange = gekkoWrapper.getDateRange(chosenRange,
                                          deltaDays=settings['testDays'])
    max_params = bo.res['max']['max_params'].copy()
    #max_params["persistence"] = 1
    print("Starting Second Evaluation")
    gekko_search(**max_params)
    s2 = stats[-1]

    # 3rd Evaluate
    print("")
    print("Step 3: testing searched parameters on recent date")
    watch = settings["watch"]
    result = EvaluateRaw(watch, DateRange, max_params, Strategy)
    if type(result['report']) == bool:
        s3 = 0.
    else:
        s3 = result['report']['relativeProfit']
    resultjson = expandGekkoStrategyParameters(max_params, Strategy)[Strategy]

    # config.js like output
    percentiles = np.array([0.25, 0.5, 0.75])
    formatted_percentiles = [
        str(int(round(x * 100))) + "%" for x in percentiles
    ]
    stats_index = (['count', 'mean', 'std', 'min'] + formatted_percentiles +
                   ['max'])
    print("")
    print("// " + '-' * 50)
    print("// " + Strategy + ' Settings')
    print("// " + '-' * 50)
    print("// 1st Evaluate: %.3f" % s1[1])
    for i in range(len(s1)):
        print('// %s: %.3f' % (stats_index[i], s1[i]))
    print("// " + '-' * 50)
    print("// 2nd Evaluate: %.3f" % s2[1])
    for i in range(len(s2)):
        print('// %s: %.3f' % (stats_index[i], s2[i]))
    print("// " + '-' * 50)
    print("// 3rd Evaluate nearest date: %s to %s" %
          (DateRange['from'], DateRange['to']))
    print("// Evaluted Score: %f" % s3)
    print("// " + '-' * 50)
    print("config.%s = {%s};" %
          (Strategy, json.dumps(resultjson, indent=2)[1:-1]))
    print("// " + '-' * 50)

    if settings["save"]:
        paramsdf = pd.DataFrame.from_dict(bo.res["all"]["params"])
        valuesdf = pd.DataFrame.from_dict(bo.res["all"]["values"])
        paramsdf["target"] = valuesdf
        watch = settings["watch"]
        filename = "_".join([
            watch["exchange"], watch["currency"], watch["asset"], Strategy,
            datetime.datetime.now().strftime('%Y%m%d_%H%M%S'),
            str(max_val)
        ])
        save_dir = gsettings["save_dir"]
        csv_filename = os.path.join(save_dir, filename) + "_bayes.csv"
        json_filename = os.path.join(save_dir, filename) + "_config.json"
        json2_filename = os.path.join(save_dir, filename) + "_response.json"
        config = expandGekkoStrategyParameters(max_params, Strategy)
        config["watch"] = watch
        gekko_config = gekkoWrapper.createConfig(config, DateRange)

        if not os.path.exists(save_dir):
            os.mkdir(save_dir)
        paramsdf.to_csv(csv_filename, index=False)
        print("Saved: " + csv_filename)
        f = open(json_filename, "w")
        f.write(json.dumps(gekko_config, indent=2))
        f.close()
        print("Saved: " + json_filename)
        f = open(json2_filename, "w")
        f.write(json.dumps(result, indent=2))
        f.close()
        print("Saved: " + json2_filename)
    if settings["show_chart"]:
        chart.show_candles(result, max_params)

    return max_params
예제 #4
0
dict_merge = lambda a, b: a.update(b) or a
gsettings = getSettings()['Global']
settings = getSettings()['bayesian']

Strategy = settings["Strategy"]
StratConfig = getSettings()["strategies"][Strategy]

percentiles = np.array([0.25, 0.5, 0.75])
all_val = []
stats = []
candleSize = 0
historySize = 0

watch = settings["watch"]

watch, DatasetRange = gekkoWrapper.getAvailableDataset(watch)


def expandGekkoStrategyParameters(IND, Strategy):
    config = {}

    IND = promoterz.utils.expandNestedParameters(IND)

    config[Strategy] = IND
    return config


def Evaluate(Strategy, parameters):

    DateRange = gekkoWrapper.getRandomDateRange(
        DatasetRange, deltaDays=settings['deltaDays'])
예제 #5
0
# Fix the shit below!
settings = getSettings()['bayesian']
bayesSettings = getSettings('bayesian')

Strategy = settings["Strategy"]
StratConfig = getSettings()["strategies"][Strategy]

percentiles = np.array([0.25, 0.5, 0.75])
all_val = []
stats = []
candleSize = 0
historySize = 0

watch = settings["watch"]

watch, DatasetRange = gekkoWrapper.getAvailableDataset(watch)


def expandGekkoStrategyParameters(IND, Strategy):
    config = {}

    IND = promoterz.utils.expandNestedParameters(IND)

    config[Strategy] = IND
    return config

def Evaluate(Strategy, parameters):

    DateRange = gekkoWrapper.getRandomDateRange(DatasetRange, deltaDays=settings['deltaDays'])
    params = expandGekkoStrategyParameters(parameters, Strategy)