def normalise_sampling(wavefronts, samplings, common_sampling, npsf): """Resample each wavefront to a common grid Parameters ---------- wavefronts : list of PROPER WaveFront class objects The wavefronts to be resampled samplings: list of floats wavefront samplings for each wavefront, in metres common_sampling : float Target wavefront sampling in metres npsf : int Dimension of new image (npsf by npsf). Returns ------- out : numpy ndarray Returns stack of wavefronts with common dimensions and sampling. """ n = len(wavefronts) out = np.zeros([n, npsf, npsf], dtype=np.float64) # Resample and weight for i in range(n): wf = wavefronts[i] # np.abs(wavefronts[i])**2 mag = samplings[i] / common_sampling out[i, :, :] = proper.prop_magnify(wf, mag, npsf, CONSERVE=True) return out
def fix_prop_pixellate(image_in, sampling_in, sampling_out, n_out=0, offset=None): """Integrate a sampled PSF onto detector pixels. This routine takes as input a sampled PSF and integrates it over pixels of a specified size. This is done by convolving the Fourier transform of the input PSF with a sinc function representing the transfer function of an idealized square pixel and transforming back. This result then represents the PSF integrated onto detector-sized pixels with the same sampling as the PSF. The result is interpolated to get detector-sized pixels at detector-pixel spacing. Parameters ---------- image_in : numpy ndarray 2D floating image containing PSF sampling_in : float Sampling of image_in in meters/pixel sampling_out : float Size(=sampling) of detector pixels n_out : int Output image dimension (n_out by n_out) offset: tuple image offset in metres, as (dx,dy) Returns ------- new : numpy ndarray Returns image integrated over square detector pixels. """ n_in = image_in.shape[0] w = int(n_in / 2) # Compute pixel transfer function (MTF) psize = 0.5 * (sampling_out / sampling_in) mag = sampling_in / sampling_out t = np.roll(np.arange(-w, w, dtype=np.float64), -w, 0) * psize * np.pi / w # t = np.arange(-w, w, dtype = np.float64) * psize * np.pi / w y = np.zeros(n_in, dtype=np.float64) y[1:] = np.sin(t[1:]) / t[1:] y[0] = 1. y = np.roll(y, +w, 0) pixel_mtf = np.dot(y[:, np.newaxis], y[np.newaxis, :]) # Convolve image with detector pixel image_mtf = np.fft.fftshift(fft2(image_in)) # shift image if offset is not None: (dx, dy) = offset vals = np.arange(-w, w) xoff, yoff = np.meshgrid(vals, vals) image_mtf *= np.exp(-1j * 2 * np.pi * (xoff * dx + yoff * dy) / (n_in * sampling_in)) image_mtf /= image_in.size image_mtf *= pixel_mtf convolved_image = np.abs( ifft2(np.fft.ifftshift(image_mtf)) * image_mtf.size) image_mtf = 0 convolved_image /= mag**2 #np.fft.ifftshift(convolved_image/mag**2) # Image is integrated over pixels but has original sampling; now, resample # pixel sampling if n_out == 0: n_out = int(np.fix(n_in * mag)) new = proper.prop_magnify(convolved_image, mag, n_out) return new
def errormap(wf, dm_map, xshift=0., yshift=0., **kwargs): """Read in a surface, wavefront, or amplitude error map from a FITS file. Map is assumed to be in meters of surface error. One (and only one) of the MIRROR_SURFACE, WAVEFRONT, or AMPLITUDE switches must be specified in order to properly apply the map to the wavefront. For surface or wavefront error maps, the map values are assumed to be in meters, unless the NM or MICRONS switches are used to specify the units. The amplitude map must range from 0 to 1. The map will be interpolated to match the current wavefront sampling if necessary. Parameters ---------- wf : obj WaveFront class object dm_map : 2D numpy array the DM map in units of surface deformation xshify, yshift : float Amount to shift map (meters) in X,Y directions Returns ------- DMAP : numpy ndarray Returns map (after any necessary resampling) if set. Other Parameters ---------------- XC_MAP, YC_MAP : float Pixel coordinates of map center (Assumed n/2,n/2) SAMPLING : float Sampling of map in meters ROTATEMAP : float Degrees counter-clockwise to rotate map, after any resampling and shifting MULTIPLY : float Multiplies the map by the specified factor MAGNIFY : float Spatially magnify the map by a factor of "constant" from its default size; do not use if SAMPLING is specified MIRROR_SURFACE : bool Indicates file contains a mirror surface height error map; It assumes a positive value indicates a surface point higher than the mean surface. The map will be multiplied by -2 to convert it to a wavefront map to account for reflection and wavefront delay (a low region on the surface causes a positive increase in the phase relative to the mean) WAVEFRONT : bool Indicates file contains a wavefront error map AMPLITUDE : bool Indicates file contains an amplitude error map NM or MICRONS : bool Indicates map values are in nanometers or microns. For surface or wavefront maps only Raises ------ SystemExit: If AMPLITUDE and (NM or MICRONS) parameters are input. SystemExit: If NM and MICRONS parameteres are input together. ValueError: If map type is MIRROR_SURFACE, WAVEFRONT, or AMPLITUDE. """ if ("AMPLITUDE" in kwargs and kwargs["AMPLITUDE"]) \ and (("NM" in kwargs and kwargs["NM"]) \ or ("MICRONS" in kwargs and kwargs["MICRONS"])): raise SystemExit( "ERRORMAP: Cannot specify NM or MICRON for an amplitude map") if ("NM" in kwargs and kwargs["NM"]) and \ ("MICRONS" in kwargs and kwargs["MICRONS"]): raise SystemExit("ERRORMAP: Cannot specify both NM and MICRONS") if not "XC_MAP" in kwargs: s = dm_map.shape xc = s[ 0] // 2 # center of map read-in (xc should be 25 for SCExAO DM maps) yc = s[1] // 2 else: xc = kwargs["XC_MAP"] yc = kwargs["YC_MAP"] # KD edit: try to get the dm map to apply only in regions of the beam n = proper.prop_get_gridsize(wf) # new_sampling = proper.prop_get_sampling( wf) #kwargs["SAMPLING"] #*dm_map.shape[0]/npix_across_beam if new_sampling > (kwargs["SAMPLING"] + kwargs["SAMPLING"]*.1) or \ new_sampling < (kwargs["SAMPLING"] - kwargs["SAMPLING"]*.1): dm_map = proper.prop_resamplemap(wf, dm_map, kwargs["SAMPLING"], 0, 0) dm_map = dm_map[n // 2:n // 2 + xc * 4, n // 2:n // 2 + xc * 4] # print(f'User-defined samping is {kwargs["SAMPLING"]:.6f} but proper wavefront has sampling of ' # f'{new_sampling:.6f}') warnings.warn( f'User-defined beam ratio does not produce aperture sampling consistent with SCExAO actuator ' f'spacing. Resampling Map') # resample dm_map to size of beam in the simulation # grid = proper.prop_resamplemap(wf, dm_map, new_sampling, xc, yc, xshift, yshift) dmap = np.zeros((wf.wfarr.shape[0], wf.wfarr.shape[1])) r = dmap.shape xrc = r[0] // 2 yrc = r[1] // 2 dmap[xrc - xc * 2:xrc + xc * 2, yrc - yc * 2:yrc + yc * 2] = dm_map # Create mask to eliminate resampling artifacts outside of beam if ("MASKING" in kwargs and kwargs["MASKING"]): h, w = wf.wfarr.shape[:2] center = (int(w / 2), int(h / 2)) radius = np.ceil(h * kwargs['BR'] / 2) # # Making the Circular Boolean Mask Y, X = np.mgrid[:h, :w] dist_from_center = np.sqrt((X - center[0])**2 + (Y - center[1])**2) inds = dist_from_center <= radius # Applying the Mask to the dm_map mask = np.zeros_like(dmap) mask[inds] = 1 dmap *= mask # Shift the center of dmap to 0,0 dmap = proper.prop_shift_center(dmap) if kwargs['PLOT']: import matplotlib.pyplot as plt from matplotlib.colors import LogNorm, SymLogNorm fig, subplot = plt.subplots(nrows=1, ncols=2, figsize=(12, 5)) ax1, ax2 = subplot.flatten() fig.suptitle(f'RTC DM Voltage Maps') ax1.imshow( dm_map, norm=SymLogNorm(1e-2) ) # LogNorm(vmin=np.min(dm_map),vmax=np.max(dm_map)) SymLogNorm(1e-2) ax1.set_title('DM Map Read In') ax2.imshow(proper.prop_shift_center( dmap)) # , cmap='hsv' must shift the center because # proper assumes dmap center is 0,0, so we need to shift it back to plot properly ax2.set_title('DM Map in Center of Proper simulated beam') if "ROTATEMAP" in kwargs or "MAGNIFY" in kwargs: # readmap stores map with center at (0,0), so shift # before and after rotation dmap = proper.prop_shift_center(dmap) if "ROTATEMAP" in kwargs: dmap = proper.prop_rotate(dmap, kwargs["ROTATEMAP"], CUBIC=-0.5, MISSING=0.0) if "MAGNIFY" in kwargs: dmap = proper.prop_magnify(dmap, kwargs["MAGNIFY"], dmap.shape[0]) dmap = proper.prop_shift_center(dmap) if ("MICRONS" in kwargs and kwargs["MICRONS"]): dmap *= 1.e-6 if ("NM" in kwargs and kwargs["NM"]): dmap *= 1.e-9 if "MULTIPLY" in kwargs: dmap *= kwargs["MULTIPLY"] i = complex(0., 1.) if ("MIRROR_SURFACE" in kwargs and kwargs["MIRROR_SURFACE"]): wf.wfarr *= np.exp(-4 * np.pi * i / wf.lamda * dmap) # Krist version elif "WAVEFRONT" in kwargs: wf.wfarr *= np.exp(2 * np.pi * i / wf.lamda * dmap) elif "AMPLITUDE" in kwargs: wf.wfarr *= dmap else: raise ValueError( "ERRORMAP: Unspecified map type: Use MIRROR_SURFACE, WAVEFRONT, or AMPLITUDE" ) # check1 = proper.prop_get_sampling(wf) # print(f"\n\tErrormap Sampling\n" # f"sampling in errormap.py is {check1 * 1e3:.4f} mm\n") return dmap
def wfirst_phaseb(lambda_m, output_dim0, PASSVALUE={'dummy': 0}): # "output_dim" is used to specify the output dimension in pixels at the final image plane. # Computational grid sizes are hardcoded for each coronagraph. # Based on Zemax prescription "WFIRST_CGI_DI_LOWFS_Sep24_2018.zmx" by Hong Tang. data_dir = wfirst_phaseb_proper.data_dir if 'PASSVALUE' in locals(): if 'data_dir' in PASSVALUE: data_dir = PASSVALUE['data_dir'] map_dir = data_dir + wfirst_phaseb_proper.map_dir polfile = data_dir + wfirst_phaseb_proper.polfile cor_type = 'hlc' # coronagraph type ('hlc', 'spc', 'none') source_x_offset_mas = 0 # source offset in mas (tilt applied at primary) source_y_offset_mas = 0 source_x_offset = 0 # source offset in lambda0_m/D radians (tilt applied at primary) source_y_offset = 0 polaxis = 0 # polarization axis aberrations: # -2 = -45d in, Y out # -1 = -45d in, X out # 1 = +45d in, X out # 2 = +45d in, Y out # 5 = mean of modes -1 & +1 (X channel polarizer) # 6 = mean of modes -2 & +2 (Y channel polarizer) # 10 = mean of all modes (no polarization filtering) use_errors = 1 # use optical surface phase errors? 1 or 0 zindex = np.array([0, 0]) # array of Zernike polynomial indices zval_m = np.array([0, 0]) # array of Zernike coefficients (meters RMS WFE) use_aperture = 0 # use apertures on all optics? 1 or 0 cgi_x_shift_pupdiam = 0 # X,Y shear of wavefront at FSM (bulk displacement of CGI); normalized relative to pupil diameter cgi_y_shift_pupdiam = 0 cgi_x_shift_m = 0 # X,Y shear of wavefront at FSM (bulk displacement of CGI) in meters cgi_y_shift_m = 0 fsm_x_offset_mas = 0 # offset in focal plane caused by tilt of FSM in mas fsm_y_offset_mas = 0 fsm_x_offset = 0 # offset in focal plane caused by tilt of FSM in lambda0/D fsm_y_offset = 0 end_at_fsm = 0 # end propagation after propagating to FSM (no FSM errors) focm_z_shift_m = 0 # offset (meters) of focus correction mirror (+ increases path length) use_hlc_dm_patterns = 0 # use Dwight's HLC default DM wavefront patterns? 1 or 0 use_dm1 = 0 # use DM1? 1 or 0 use_dm2 = 0 # use DM2? 1 or 0 dm_sampling_m = 0.9906e-3 # actuator spacing in meters dm1_xc_act = 23.5 # for 48x48 DM, wavefront centered at actuator intersections: (0,0) = 1st actuator center dm1_yc_act = 23.5 dm1_xtilt_deg = 0 # tilt around X axis (deg) dm1_ytilt_deg = 5.7 # effective DM tilt in deg including 9.65 deg actual tilt and pupil ellipticity dm1_ztilt_deg = 0 # rotation of DM about optical axis (deg) dm2_xc_act = 23.5 # for 48x48 DM, wavefront centered at actuator intersections: (0,0) = 1st actuator center dm2_yc_act = 23.5 dm2_xtilt_deg = 0 # tilt around X axis (deg) dm2_ytilt_deg = 5.7 # effective DM tilt in deg including 9.65 deg actual tilt and pupil ellipticity dm2_ztilt_deg = 0 # rotation of DM about optical axis (deg) use_pupil_mask = 1 # SPC only: use SPC pupil mask (0 or 1) mask_x_shift_pupdiam = 0 # X,Y shear of shaped pupil mask; normalized relative to pupil diameter mask_y_shift_pupdiam = 0 mask_x_shift_m = 0 # X,Y shear of shaped pupil mask in meters mask_y_shift_m = 0 use_fpm = 1 # use occulter? 1 or 0 fpm_x_offset = 0 # FPM x,y offset in lambda0/D fpm_y_offset = 0 fpm_x_offset_m = 0 # FPM x,y offset in meters fpm_y_offset_m = 0 fpm_z_shift_m = 0 # occulter offset in meters along optical axis (+ = away from prior optics) pinhole_diam_m = 0 # FPM pinhole diameter in meters end_at_fpm_exit_pupil = 0 # return field at FPM exit pupil? output_field_rootname = '' # rootname of FPM exit pupil field file (must set end_at_fpm_exit_pupil=1) use_lyot_stop = 1 # use Lyot stop? 1 or 0 lyot_x_shift_pupdiam = 0 # X,Y shear of Lyot stop mask; normalized relative to pupil diameter lyot_y_shift_pupdiam = 0 lyot_x_shift_m = 0 # X,Y shear of Lyot stop mask in meters lyot_y_shift_m = 0 use_field_stop = 1 # use field stop (HLC)? 1 or 0 field_stop_radius_lam0 = 0 # field stop radius in lambda0/D (HLC or SPC-wide mask only) field_stop_x_offset = 0 # field stop offset in lambda0/D field_stop_y_offset = 0 field_stop_x_offset_m = 0 # field stop offset in meters field_stop_y_offset_m = 0 use_pupil_lens = 0 # use pupil imaging lens? 0 or 1 use_defocus_lens = 0 # use defocusing lens? Options are 1, 2, 3, 4, corresponding to +18.0, +9.0, -4.0, -8.0 waves P-V @ 550 nm defocus = 0 # instead of specific lens, defocus in waves P-V @ 550 nm (-8.7 to 42.0 waves) final_sampling_m = 0 # final sampling in meters (overrides final_sampling_lam0) final_sampling_lam0 = 0 # final sampling in lambda0/D output_dim = output_dim0 # dimension of output in pixels (overrides output_dim0) if 'PASSVALUE' in locals(): if 'use_fpm' in PASSVALUE: use_fpm = PASSVALUE['use_fpm'] if 'cor_type' in PASSVALUE: cor_type = PASSVALUE['cor_type'] is_spc = False is_hlc = False if cor_type == 'hlc': is_hlc = True file_directory = data_dir + '/hlc_20190210/' # must have trailing "/" prefix = file_directory + 'run461_' pupil_diam_pix = 309.0 pupil_file = prefix + 'pupil_rotated.fits' lyot_stop_file = prefix + 'lyot.fits' lambda0_m = 0.575e-6 lam_occ = [ 5.4625e-07, 5.49444444444e-07, 5.52638888889e-07, 5.534375e-07, 5.55833333333e-07, 5.59027777778e-07, 5.60625e-07, 5.62222222222e-07, 5.65416666667e-07, 5.678125e-07, 5.68611111111e-07, 5.71805555556e-07, 5.75e-07, 5.78194444444e-07, 5.81388888889e-07, 5.821875e-07, 5.84583333333e-07, 5.87777777778e-07, 5.89375e-07, 5.90972222222e-07, 5.94166666667e-07, 5.965625e-07, 5.97361111111e-07, 6.00555555556e-07, 6.0375e-07 ] lam_occs = [ '5.4625e-07', '5.49444444444e-07', '5.52638888889e-07', '5.534375e-07', '5.55833333333e-07', '5.59027777778e-07', '5.60625e-07', '5.62222222222e-07', '5.65416666667e-07', '5.678125e-07', '5.68611111111e-07', '5.71805555556e-07', '5.75e-07', '5.78194444444e-07', '5.81388888889e-07', '5.821875e-07', '5.84583333333e-07', '5.87777777778e-07', '5.89375e-07', '5.90972222222e-07', '5.94166666667e-07', '5.965625e-07', '5.97361111111e-07', '6.00555555556e-07', '6.0375e-07' ] lam_occs = [ prefix + 'occ_lam' + s + 'theta6.69polp_' for s in lam_occs ] # find nearest matching FPM wavelength wlam = (np.abs(lambda_m - np.array(lam_occ))).argmin() occulter_file_r = lam_occs[wlam] + 'real.fits' occulter_file_i = lam_occs[wlam] + 'imag.fits' n_default = 1024 # gridsize in non-critical areas if use_fpm == 1: n_to_fpm = 2048 else: n_to_fpm = 1024 n_from_lyotstop = 1024 field_stop_radius_lam0 = 9.0 elif cor_type == 'hlc_erkin': is_hlc = True file_directory = data_dir + '/hlc_20190206_v3/' # must have trailing "/" prefix = file_directory + 'dsn17d_run2_pup310_fpm2048_' pupil_diam_pix = 310.0 pupil_file = prefix + 'pupil.fits' lyot_stop_file = prefix + 'lyot.fits' lambda0_m = 0.575e-6 lam_occ = [ 5.4625e-07, 5.4944e-07, 5.5264e-07, 5.5583e-07, 5.5903e-07, 5.6222e-07, 5.6542e-07, 5.6861e-07, 5.7181e-07, 5.75e-07, 5.7819e-07, 5.8139e-07, 5.8458e-07, 5.8778e-07, 5.9097e-07, 5.9417e-07, 5.9736e-07, 6.0056e-07, 6.0375e-07 ] lam_occs = [ '5.4625e-07', '5.4944e-07', '5.5264e-07', '5.5583e-07', '5.5903e-07', '5.6222e-07', '5.6542e-07', '5.6861e-07', '5.7181e-07', '5.75e-07', '5.7819e-07', '5.8139e-07', '5.8458e-07', '5.8778e-07', '5.9097e-07', '5.9417e-07', '5.9736e-07', '6.0056e-07', '6.0375e-07' ] lam_occs = [ prefix + 'occ_lam' + s + 'theta6.69pols_' for s in lam_occs ] # find nearest matching FPM wavelength wlam = (np.abs(lambda_m - np.array(lam_occ))).argmin() occulter_file_r = lam_occs[wlam] + 'real_rotated.fits' occulter_file_i = lam_occs[wlam] + 'imag_rotated.fits' n_default = 1024 # gridsize in non-critical areas if use_fpm == 1: n_to_fpm = 2048 else: n_to_fpm = 1024 n_from_lyotstop = 1024 field_stop_radius_lam0 = 9.0 elif cor_type == 'spc-ifs_short' or cor_type == 'spc-ifs_long' or cor_type == 'spc-spec_short' or cor_type == 'spc-spec_long': is_spc = True file_dir = data_dir + '/spc_20190130/' # must have trailing "/" pupil_diam_pix = 1000.0 pupil_file = file_dir + 'pupil_SPC-20190130_rotated.fits' pupil_mask_file = file_dir + 'SPM_SPC-20190130.fits' fpm_file = file_dir + 'fpm_0.05lamdivD.fits' fpm_sampling = 0.05 # sampling in fpm_sampling_lambda_m/D of FPM mask if cor_type == 'spc-ifs_short' or cor_type == 'spc-spec_short': fpm_sampling_lambda_m = 0.66e-6 lambda0_m = 0.66e-6 else: fpm_sampling_lambda_m = 0.73e-6 lambda0_m = 0.73e-6 # FPM scaled for this central wavelength lyot_stop_file = file_dir + 'LS_SPC-20190130.fits' n_default = 2048 # gridsize in non-critical areas n_to_fpm = 2048 # gridsize to/from FPM n_mft = 1400 # gridsize to FPM (propagation to/from FPM handled by MFT) n_from_lyotstop = 4096 elif cor_type == 'spc-wide': is_spc = True file_dir = data_dir + '/spc_20181220/' # must have trailing "/" pupil_diam_pix = 1000.0 pupil_file = file_dir + 'pupil_SPC-20181220_1k_rotated.fits' pupil_mask_file = file_dir + 'SPM_SPC-20181220_1000_rounded9_gray.fits' fpm_file = file_dir + 'fpm_0.05lamdivD.fits' fpm_sampling = 0.05 # sampling in lambda0/D of FPM mask fpm_sampling_lambda_m = 0.825e-6 lambda0_m = 0.825e-6 # FPM scaled for this central wavelength lyot_stop_file = file_dir + 'LS_SPC-20181220_1k.fits' n_default = 2048 # gridsize in non-critical areas n_to_fpm = 2048 # gridsize to/from FPM n_mft = 1400 n_from_lyotstop = 4096 elif cor_type == 'none': file_directory = data_dir + '/hlc_20190210/' # must have trailing "/" prefix = file_directory + 'run461_' pupil_diam_pix = 309.0 pupil_file = prefix + 'pupil_rotated.fits' lambda0_m = 0.575e-6 use_fpm = 0 use_lyot_stop = 0 use_field_stop = 0 n_default = 1024 n_to_fpm = 1024 n_from_lyotstop = 1024 else: raise Exception('ERROR: Unsupported cor_type: ' + cor_type) if 'PASSVALUE' in locals(): if 'lam0' in PASSVALUE: lamba0_m = PASSVALUE['lam0'] * 1.0e-6 if 'lambda0_m' in PASSVALUE: lambda0_m = PASSVALUE['lambda0_m'] mas_per_lamD = lambda0_m * 360.0 * 3600.0 / ( 2 * np.pi * 2.363) * 1000 # mas per lambda0/D if 'source_x_offset' in PASSVALUE: source_x_offset = PASSVALUE['source_x_offset'] if 'source_y_offset' in PASSVALUE: source_y_offset = PASSVALUE['source_y_offset'] if 'source_x_offset_mas' in PASSVALUE: source_x_offset = PASSVALUE['source_x_offset_mas'] / mas_per_lamD if 'source_y_offset_mas' in PASSVALUE: source_y_offset = PASSVALUE['source_y_offset_mas'] / mas_per_lamD if 'use_errors' in PASSVALUE: use_errors = PASSVALUE['use_errors'] if 'polaxis' in PASSVALUE: polaxis = PASSVALUE['polaxis'] if 'zindex' in PASSVALUE: zindex = np.array(PASSVALUE['zindex']) if 'zval_m' in PASSVALUE: zval_m = np.array(PASSVALUE['zval_m']) if 'end_at_fsm' in PASSVALUE: end_at_fsm = PASSVALUE['end_at_fsm'] if 'cgi_x_shift_pupdiam' in PASSVALUE: cgi_x_shift_pupdiam = PASSVALUE['cgi_x_shift_pupdiam'] if 'cgi_y_shift_pupdiam' in PASSVALUE: cgi_y_shift_pupdiam = PASSVALUE['cgi_y_shift_pupdiam'] if 'cgi_x_shift_m' in PASSVALUE: cgi_x_shift_m = PASSVALUE['cgi_x_shift_m'] if 'cgi_y_shift_m' in PASSVALUE: cgi_y_shift_m = PASSVALUE['cgi_y_shift_m'] if 'fsm_x_offset' in PASSVALUE: fsm_x_offset = PASSVALUE['fsm_x_offset'] if 'fsm_y_offset' in PASSVALUE: fsm_y_offset = PASSVALUE['fsm_y_offset'] if 'fsm_x_offset_mas' in PASSVALUE: fsm_x_offset = PASSVALUE['fsm_x_offset_mas'] / mas_per_lamD if 'fsm_y_offset_mas' in PASSVALUE: fsm_y_offset = PASSVALUE['fsm_y_offset_mas'] / mas_per_lamD if 'focm_z_shift_m' in PASSVALUE: focm_z_shift_m = PASSVALUE['focm_z_shift_m'] if 'use_hlc_dm_patterns' in PASSVALUE: use_hlc_dm_patterns = PASSVALUE['use_hlc_dm_patterns'] if 'use_dm1' in PASSVALUE: use_dm1 = PASSVALUE['use_dm1'] if 'dm1_m' in PASSVALUE: dm1_m = PASSVALUE['dm1_m'] if 'dm1_xc_act' in PASSVALUE: dm1_xc_act = PASSVALUE['dm1_xc_act'] if 'dm1_yc_act' in PASSVALUE: dm1_yc_act = PASSVALUE['dm1_yc_act'] if 'dm1_xtilt_deg' in PASSVALUE: dm1_xtilt_deg = PASSVALUE['dm1_xtilt_deg'] if 'dm1_ytilt_deg' in PASSVALUE: dm1_ytilt_deg = PASSVALUE['dm1_ytilt_deg'] if 'dm1_ztilt_deg' in PASSVALUE: dm1_ztilt_deg = PASSVALUE['dm1_ztilt_deg'] if 'use_dm2' in PASSVALUE: use_dm2 = PASSVALUE['use_dm2'] if 'dm2_m' in PASSVALUE: dm2_m = PASSVALUE['dm2_m'] if 'dm2_xc_act' in PASSVALUE: dm2_xc_act = PASSVALUE['dm2_xc_act'] if 'dm2_yc_act' in PASSVALUE: dm2_yc_act = PASSVALUE['dm2_yc_act'] if 'dm2_xtilt_deg' in PASSVALUE: dm2_xtilt_deg = PASSVALUE['dm2_xtilt_deg'] if 'dm2_ytilt_deg' in PASSVALUE: dm2_ytilt_deg = PASSVALUE['dm2_ytilt_deg'] if 'dm2_ztilt_deg' in PASSVALUE: dm2_ztilt_deg = PASSVALUE['dm2_ztilt_deg'] if 'use_pupil_mask' in PASSVALUE: use_pupil_mask = PASSVALUE['use_pupil_mask'] if 'mask_x_shift_pupdiam' in PASSVALUE: mask_x_shift_pupdiam = PASSVALUE['mask_x_shift_pupdiam'] if 'mask_y_shift_pupdiam' in PASSVALUE: mask_y_shift_pupdiam = PASSVALUE['mask_y_shift_pupdiam'] if 'mask_x_shift_m' in PASSVALUE: mask_x_shift_m = PASSVALUE['mask_x_shift_m'] if 'mask_y_shift_m' in PASSVALUE: mask_y_shift_m = PASSVALUE['mask_y_shift_m'] if 'fpm_x_offset' in PASSVALUE: fpm_x_offset = PASSVALUE['fpm_x_offset'] if 'fpm_y_offset' in PASSVALUE: fpm_y_offset = PASSVALUE['fpm_y_offset'] if 'fpm_x_offset_m' in PASSVALUE: fpm_x_offset_m = PASSVALUE['fpm_x_offset_m'] if 'fpm_y_offset_m' in PASSVALUE: fpm_y_offset_m = PASSVALUE['fpm_y_offset_m'] if 'fpm_z_shift_m' in PASSVALUE: fpm_z_shift_m = PASSVALUE['fpm_z_shift_m'] if 'pinhole_diam_m' in PASSVALUE: pinhole_diam_m = PASSVALUE['pinhole_diam_m'] if 'end_at_fpm_exit_pupil' in PASSVALUE: end_at_fpm_exit_pupil = PASSVALUE['end_at_fpm_exit_pupil'] if 'output_field_rootname' in PASSVALUE: output_field_rootname = PASSVALUE['output_field_rootname'] if 'use_lyot_stop' in PASSVALUE: use_lyot_stop = PASSVALUE['use_lyot_stop'] if 'lyot_x_shift_pupdiam' in PASSVALUE: lyot_x_shift_pupdiam = PASSVALUE['lyot_x_shift_pupdiam'] if 'lyot_y_shift_pupdiam' in PASSVALUE: lyot_y_shift_pupdiam = PASSVALUE['lyot_y_shift_pupdiam'] if 'lyot_x_shift_m' in PASSVALUE: lyot_x_shift_m = PASSVALUE['lyot_x_shift_m'] if 'lyot_y_shift_m' in PASSVALUE: lyot_y_shift_m = PASSVALUE['lyot_y_shift_m'] if 'use_field_stop' in PASSVALUE: use_field_stop = PASSVALUE['use_field_stop'] if 'field_stop_x_offset' in PASSVALUE: field_stop_x_offset = PASSVALUE['field_stop_x_offset'] if 'field_stop_y_offset' in PASSVALUE: field_stop_y_offset = PASSVALUE['field_stop_y_offset'] if 'field_stop_x_offset_m' in PASSVALUE: field_stop_x_offset_m = PASSVALUE['field_stop_x_offset_m'] if 'field_stop_y_offset_m' in PASSVALUE: field_stop_y_offset_m = PASSVALUE['field_stop_y_offset_m'] if 'use_pupil_lens' in PASSVALUE: use_pupil_lens = PASSVALUE['use_pupil_lens'] if 'use_defocus_lens' in PASSVALUE: use_defocus_lens = PASSVALUE['use_defocus_lens'] if 'defocus' in PASSVALUE: defocus = PASSVALUE['defocus'] if 'output_dim' in PASSVALUE: output_dim = PASSVALUE['output_dim'] if 'final_sampling_m' in PASSVALUE: final_sampling_m = PASSVALUE['final_sampling_m'] if 'final_sampling_lam0' in PASSVALUE: final_sampling_lam0 = PASSVALUE['final_sampling_lam0'] diam = 2.3633372 fl_pri = 2.83459423440 * 1.0013 d_pri_sec = 2.285150515460035 d_focus_sec = d_pri_sec - fl_pri fl_sec = -0.653933011 * 1.0004095 d_sec_focus = 3.580188916677103 diam_sec = 0.58166 d_sec_fold1 = 2.993753476654728 d_fold1_focus = 0.586435440022375 diam_fold1 = 0.09 d_fold1_m3 = 1.680935841598811 fl_m3 = 0.430216463069001 d_focus_m3 = 1.094500401576436 d_m3_pupil = 0.469156807701977 d_m3_focus = 0.708841602661368 diam_m3 = 0.2 d_m3_m4 = 0.943514749358944 fl_m4 = 0.116239114833590 d_focus_m4 = 0.234673014520402 d_m4_pupil = 0.474357941656967 d_m4_focus = 0.230324117970585 diam_m4 = 0.07 d_m4_m5 = 0.429145636743193 d_m5_focus = 0.198821518772608 fl_m5 = 0.198821518772608 d_m5_pupil = 0.716529242882632 diam_m5 = 0.07 d_m5_fold2 = 0.351125431220770 diam_fold2 = 0.06 d_fold2_fsm = 0.365403811661862 d_fsm_oap1 = 0.354826767220001 fl_oap1 = 0.503331895563883 diam_oap1 = 0.06 d_oap1_focm = 0.768005607094041 d_focm_oap2 = 0.314483210543378 fl_oap2 = 0.579156922073536 diam_oap2 = 0.06 d_oap2_dm1 = 0.775775726154228 d_dm1_dm2 = 1.0 d_dm2_oap3 = 0.394833855161549 fl_oap3 = 1.217276467668519 diam_oap3 = 0.06 d_oap3_fold3 = 0.505329955078121 diam_fold3 = 0.06 d_fold3_oap4 = 1.158897671642761 fl_oap4 = 0.446951159052363 diam_oap4 = 0.06 d_oap4_pupilmask = 0.423013568764728 d_pupilmask_oap5 = 0.408810648253099 fl_oap5 = 0.548189351937178 diam_oap5 = 0.06 d_oap5_fpm = 0.548189083164429 d_fpm_oap6 = 0.548189083164429 fl_oap6 = 0.548189083164429 diam_oap6 = 0.06 d_oap6_lyotstop = 0.687567667550736 d_lyotstop_oap7 = 0.401748843470518 fl_oap7 = 0.708251083480054 diam_oap7 = 0.06 d_oap7_fieldstop = 0.708251083480054 d_fieldstop_oap8 = 0.210985967281651 fl_oap8 = 0.210985967281651 diam_oap8 = 0.06 d_oap8_pupil = 0.238185804200797 d_oap8_filter = 0.368452268225530 diam_filter = 0.01 d_filter_lens = 0.170799548215162 fl_lens = 0.246017378417573 + 0.050001306014153 diam_lens = 0.01 d_lens_fold4 = 0.246017378417573 diam_fold4 = 0.02 d_fold4_image = 0.050001578514650 fl_pupillens = 0.149260576823040 n = n_default # start off with less padding wavefront = proper.prop_begin(diam, lambda_m, n, float(pupil_diam_pix) / n) pupil = proper.prop_fits_read(pupil_file) proper.prop_multiply(wavefront, trim(pupil, n)) pupil = 0 if polaxis != 0: polmap(wavefront, polfile, pupil_diam_pix, polaxis) proper.prop_define_entrance(wavefront) proper.prop_lens(wavefront, fl_pri) if source_x_offset != 0 or source_y_offset != 0: # compute tilted wavefront to offset source by xoffset,yoffset lambda0_m/D xtilt_lam = -source_x_offset * lambda0_m / lambda_m ytilt_lam = -source_y_offset * lambda0_m / lambda_m x = np.tile((np.arange(n) - n // 2) / (pupil_diam_pix / 2.0), (n, 1)) y = np.transpose(x) proper.prop_multiply( wavefront, np.exp(complex(0, 1) * np.pi * (xtilt_lam * x + ytilt_lam * y))) x = 0 y = 0 if zindex[0] != 0: proper.prop_zernikes(wavefront, zindex, zval_m) if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_PRIMARY_phase_error_V1.0.fits', WAVEFRONT=True) proper.prop_errormap( wavefront, map_dir + 'wfirst_phaseb_GROUND_TO_ORBIT_4.2X_phase_error_V1.0.fits', WAVEFRONT=True) proper.prop_propagate(wavefront, d_pri_sec, 'secondary') proper.prop_lens(wavefront, fl_sec) if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_SECONDARY_phase_error_V1.0.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_sec / 2.0) proper.prop_propagate(wavefront, d_sec_fold1, 'FOLD_1') if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_FOLD1_phase_error_V1.0.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_fold1 / 2.0) proper.prop_propagate(wavefront, d_fold1_m3, 'M3') proper.prop_lens(wavefront, fl_m3) if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_M3_phase_error_V1.0.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_m3 / 2.0) proper.prop_propagate(wavefront, d_m3_m4, 'M4') proper.prop_lens(wavefront, fl_m4) if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_M4_phase_error_V1.0.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_m4 / 2.0) proper.prop_propagate(wavefront, d_m4_m5, 'M5') proper.prop_lens(wavefront, fl_m5) if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_M5_phase_error_V1.0.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_m5 / 2.0) proper.prop_propagate(wavefront, d_m5_fold2, 'FOLD_2') if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_FOLD2_phase_error_V1.0.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_fold2 / 2.0) proper.prop_propagate(wavefront, d_fold2_fsm, 'FSM') if end_at_fsm == 1: (wavefront, sampling_m) = proper.prop_end(wavefront, NOABS=True) wavefront = trim(wavefront, n) return wavefront, sampling_m if cgi_x_shift_pupdiam != 0 or cgi_y_shift_pupdiam != 0 or cgi_x_shift_m != 0 or cgi_y_shift_m != 0: # bulk coronagraph pupil shear # FFT the field, apply a tilt, FFT back if cgi_x_shift_pupdiam != 0 or cgi_y_shift_pupdiam != 0: # offsets are normalized to pupil diameter xt = -cgi_x_shift_pupdiam * pupil_diam_pix * float( pupil_diam_pix) / n yt = -cgi_y_shift_pupdiam * pupil_diam_pix * float( pupil_diam_pix) / n else: # offsets are meters d_m = proper.prop_get_sampling(wavefront) xt = -cgi_x_shift_m / d_m * float(pupil_diam_pix) / n yt = -cgi_y_shift_m / d_m * float(pupil_diam_pix) / n x = np.tile((np.arange(n) - n // 2) / (pupil_diam_pix / 2.0), (n, 1)) y = np.transpose(x) tilt = complex(0, 1) * np.pi * (x * xt + y * yt) x = 0 y = 0 wavefront0 = proper.prop_get_wavefront(wavefront) wavefront0 = ffts(wavefront0, -1) wavefront0 *= np.exp(tilt) wavefront0 = ffts(wavefront0, 1) tilt = 0 wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0) wavefront0 = 0 if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_FSM_phase_error_V1.0.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_fsm / 2.0) if (fsm_x_offset != 0.0 or fsm_y_offset != 0.0): # compute tilted wavefront to offset source by fsm_x_offset,fsm_y_offset lambda0_m/D xtilt_lam = fsm_x_offset * lambda0_m / lambda_m ytilt_lam = fsm_y_offset * lambda0_m / lambda_m x = np.tile((np.arange(n) - n // 2) / (pupil_diam_pix / 2.0), (n, 1)) y = np.transpose(x) proper.prop_multiply( wavefront, np.exp(complex(0, 1) * np.pi * (xtilt_lam * x + ytilt_lam * y))) x = 0 y = 0 proper.prop_propagate(wavefront, d_fsm_oap1, 'OAP1') proper.prop_lens(wavefront, fl_oap1) if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_OAP1_phase_error_V1.0.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_oap1 / 2.0) proper.prop_propagate(wavefront, d_oap1_focm + focm_z_shift_m, 'FOCM') if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_FOCM_phase_error_V1.0.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_focm / 2.0) proper.prop_propagate(wavefront, d_focm_oap2 + focm_z_shift_m, 'OAP2') proper.prop_lens(wavefront, fl_oap2) if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_OAP2_phase_error_V1.0.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_oap2 / 2.0) proper.prop_propagate(wavefront, d_oap2_dm1, 'DM1') if use_dm1 != 0: proper.prop_dm(wavefront, dm1_m, dm1_xc_act, dm1_yc_act, dm_sampling_m, XTILT=dm1_xtilt_deg, YTILT=dm1_ytilt_deg, ZTILT=dm1_ztilt_deg) if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_DM1_phase_error_V1.0.fits', WAVEFRONT=True) if is_hlc == True and use_hlc_dm_patterns == 1: dm1wfe = proper.prop_fits_read(prefix + 'dm1wfe.fits') proper.prop_add_phase(wavefront, trim(dm1wfe, n)) dm1wfe = 0 proper.prop_propagate(wavefront, d_dm1_dm2, 'DM2') if use_dm2 == 1: proper.prop_dm(wavefront, dm2_m, dm2_xc_act, dm2_yc_act, dm_sampling_m, XTILT=dm2_xtilt_deg, YTILT=dm2_ytilt_deg, ZTILT=dm2_ztilt_deg) if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_DM2_phase_error_V1.0.fits', WAVEFRONT=True) if is_hlc == True: if use_hlc_dm_patterns == 1: dm2wfe = proper.prop_fits_read(prefix + 'dm2wfe.fits') proper.prop_add_phase(wavefront, trim(dm2wfe, n)) dm2wfe = 0 dm2mask = proper.prop_fits_read(prefix + 'dm2mask.fits') proper.prop_multiply(wavefront, trim(dm2mask, n)) dm2mask = 0 proper.prop_propagate(wavefront, d_dm2_oap3, 'OAP3') proper.prop_lens(wavefront, fl_oap3) if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_OAP3_phase_error_V1.0.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_oap3 / 2.0) proper.prop_propagate(wavefront, d_oap3_fold3, 'FOLD_3') if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_FOLD3_phase_error_V1.0.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_fold3 / 2.0) proper.prop_propagate(wavefront, d_fold3_oap4, 'OAP4') proper.prop_lens(wavefront, fl_oap4) if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_OAP4_phase_error_V1.0.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_oap4 / 2.0) proper.prop_propagate(wavefront, d_oap4_pupilmask, 'PUPIL_MASK') # flat/reflective shaped pupil if is_spc == True and use_pupil_mask != 0: pupil_mask = proper.prop_fits_read(pupil_mask_file) pupil_mask = trim(pupil_mask, n) if mask_x_shift_pupdiam != 0 or mask_y_shift_pupdiam != 0 or mask_x_shift_m != 0 or mask_y_shift_m != 0: # shift SP mask by FFTing it, applying tilt, and FFTing back if mask_x_shift_pupdiam != 0 or mask_y_shift_pupdiam != 0: # offsets are normalized to pupil diameter xt = -mask_x_shift_pupdiam * pupil_diam_pix * float( pupil_diam_pix) / n yt = -mask_y_shift_pupdiam * pupil_diam_pix * float( pupil_diam_pix) / n else: d_m = proper.prop_get_sampling(wavefront) xt = -mask_x_shift_m / d_m * float(pupil_diam_pix) / n yt = -mask_y_shift_m / d_m * float(pupil_diam_pix) / n x = np.tile((np.arange(n) - n // 2) / (pupil_diam_pix / 2.0), (n, 1)) y = np.transpose(x) tilt = complex(0, 1) * np.pi * (x * xt + y * yt) x = 0 y = 0 pupil_mask = ffts(pupil_mask, -1) pupil_mask *= np.exp(tilt) pupil_mask = ffts(pupil_mask, 1) pupil_mask = pupil_mask.real tilt = 0 proper.prop_multiply(wavefront, pupil_mask) pupil_mask = 0 if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_PUPILMASK_phase_error_V1.0.fits', WAVEFRONT=True) # while at a pupil, use more padding to provide 2x better sampling at FPM diam = 2 * proper.prop_get_beamradius(wavefront) (wavefront, dx) = proper.prop_end(wavefront, NOABS=True) n = n_to_fpm wavefront0 = trim(wavefront, n) wavefront = proper.prop_begin(diam, lambda_m, n, float(pupil_diam_pix) / n) wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0) wavefront0 = 0 proper.prop_propagate(wavefront, d_pupilmask_oap5, 'OAP5') proper.prop_lens(wavefront, fl_oap5) if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_OAP5_phase_error_V1.0.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_oap5 / 2.0) proper.prop_propagate(wavefront, d_oap5_fpm + fpm_z_shift_m, 'FPM', TO_PLANE=True) if use_fpm == 1: if fpm_x_offset != 0 or fpm_y_offset != 0 or fpm_x_offset_m != 0 or fpm_y_offset_m != 0: # To shift FPM, FFT field to pupil, apply tilt, FFT back to focus, # apply FPM, FFT to pupil, take out tilt, FFT back to focus if fpm_x_offset != 0 or fpm_y_offset != 0: # shifts are specified in lambda0/D x_offset_lamD = fpm_x_offset * lambda0_m / lambda_m y_offset_lamD = fpm_y_offset * lambda0_m / lambda_m else: d_m = proper.prop_get_sampling(wavefront) x_offset_lamD = fpm_x_offset_m / d_m * float( pupil_diam_pix) / n y_offset_lamD = fpm_y_offset_m / d_m * float( pupil_diam_pix) / n x = np.tile((np.arange(n) - n // 2) / (pupil_diam_pix / 2.0), (n, 1)) y = np.transpose(x) tilt = complex(0, 1) * np.pi * (x * x_offset_lamD + y * y_offset_lamD) x = 0 y = 0 wavefront0 = proper.prop_get_wavefront(wavefront) wavefront0 = ffts(wavefront0, -1) wavefront0 *= np.exp(tilt) wavefront0 = ffts(wavefront0, 1) wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0) wavefront0 = 0 if is_hlc == True: occ_r = proper.prop_fits_read(occulter_file_r) occ_i = proper.prop_fits_read(occulter_file_i) occ = np.array(occ_r + 1j * occ_i, dtype=np.complex128) proper.prop_multiply(wavefront, trim(occ, n)) occ_r = 0 occ_i = 0 occ = 0 elif is_spc == True: # super-sample FPM wavefront0 = proper.prop_get_wavefront(wavefront) wavefront0 = ffts(wavefront0, 1) # to virtual pupil wavefront0 = trim(wavefront0, n_mft) fpm = proper.prop_fits_read(fpm_file) nfpm = fpm.shape[1] fpm_sampling_lam = fpm_sampling * fpm_sampling_lambda_m / lambda_m wavefront0 = mft2(wavefront0, fpm_sampling_lam, pupil_diam_pix, nfpm, -1) # MFT to highly-sampled focal plane wavefront0 *= fpm fpm = 0 wavefront0 = mft2(wavefront0, fpm_sampling_lam, pupil_diam_pix, n, +1) # MFT to virtual pupil wavefront0 = ffts(wavefront0, -1) # back to normally-sampled focal plane wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0) wavefront0 = 0 if fpm_x_offset != 0 or fpm_y_offset != 0 or fpm_x_offset_m != 0 or fpm_y_offset_m != 0: wavefront0 = proper.prop_get_wavefront(wavefront) wavefront0 = ffts(wavefront0, -1) wavefront0 *= np.exp(-tilt) wavefront0 = ffts(wavefront0, 1) wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0) wavefront0 = 0 tilt = 0 if pinhole_diam_m != 0: # "pinhole_diam_m" is pinhole diameter in meters dx_m = proper.prop_get_sampling(wavefront) dx_pinhole_diam_m = pinhole_diam_m / 101.0 # 101 samples across pinhole n_out = 105 m_per_lamD = dx_m * n / float( pupil_diam_pix) # current focal plane sampling in lambda_m/D dx_pinhole_lamD = dx_pinhole_diam_m / m_per_lamD # pinhole sampling in lambda_m/D n_in = int(round(pupil_diam_pix * 1.2)) wavefront0 = proper.prop_get_wavefront(wavefront) wavefront0 = ffts(wavefront0, +1) # to virtual pupil wavefront0 = trim(wavefront0, n_in) m = dx_pinhole_lamD * n_in * float(n_out) / pupil_diam_pix wavefront0 = mft2(wavefront0, dx_pinhole_lamD, pupil_diam_pix, n_out, -1) # MFT to highly-sampled focal plane p = (radius(n_out) * dx_pinhole_diam_m) <= (pinhole_diam_m / 2.0) p = p.astype(np.int) wavefront0 *= p p = 0 wavefront0 = mft2(wavefront0, dx_pinhole_lamD, pupil_diam_pix, n, +1) # MFT back to virtual pupil wavefront0 = ffts(wavefront0, -1) # back to normally-sampled focal plane wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0) wavefront0 = 0 proper.prop_propagate(wavefront, d_fpm_oap6 - fpm_z_shift_m, 'OAP6') proper.prop_lens(wavefront, fl_oap6) if use_errors != 0 and end_at_fpm_exit_pupil == 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_OAP6_phase_error_V1.0.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_oap6 / 2.0) proper.prop_propagate(wavefront, d_oap6_lyotstop, 'LYOT_STOP') # while at a pupil, switch back to less padding diam = 2 * proper.prop_get_beamradius(wavefront) (wavefront, dx) = proper.prop_end(wavefront, NOABS=True) n = n_from_lyotstop wavefront = trim(wavefront, n) if output_field_rootname != '': lams = format(lambda_m * 1e6, "6.4f") pols = format(int(round(polaxis))) hdu = pyfits.PrimaryHDU() hdu.data = np.real(wavefront) hdu.writeto(output_field_rootname + '_' + lams + 'um_' + pols + '_real.fits', overwrite=True) hdu = pyfits.PrimaryHDU() hdu.data = np.imag(wavefront) hdu.writeto(output_field_rootname + '_' + lams + 'um_' + pols + '_imag.fits', overwrite=True) if end_at_fpm_exit_pupil == 1: return wavefront, dx wavefront0 = wavefront.copy() wavefront = 0 wavefront = proper.prop_begin(diam, lambda_m, n, float(pupil_diam_pix) / n) wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0) wavefront0 = 0 if use_lyot_stop != 0: lyot = proper.prop_fits_read(lyot_stop_file) lyot = trim(lyot, n) if lyot_x_shift_pupdiam != 0 or lyot_y_shift_pupdiam != 0 or lyot_x_shift_m != 0 or lyot_y_shift_m != 0: # apply shift to lyot stop by FFTing the stop, applying a tilt, and FFTing back if lyot_x_shift_pupdiam != 0 or lyot_y_shift_pupdiam != 0: # offsets are normalized to pupil diameter xt = -lyot_x_shift_pupdiam * pupil_diam_pix * float( pupil_diam_pix) / n yt = -lyot_y_shift_pupdiam * pupil_diam_pix * float( pupil_diam_pix) / n else: d_m = proper.prop_get_sampling(wavefront) xt = -lyot_x_shift_m / d_m * float(pupil_diam_pix) / n yt = -lyot_y_shift_m / d_m * float(pupil_diam_pix) / n x = np.tile((np.arange(n) - n // 2) / (pupil_diam_pix / 2.0), (n, 1)) y = np.transpose(x) tilt = complex(0, 1) * np.pi * (x * xt + y * yt) x = 0 y = 0 lyot = ffts(lyot, -1) lyot *= np.exp(tilt) lyot = ffts(lyot, 1) lyot = lyot.real tilt = 0 proper.prop_multiply(wavefront, lyot) lyot = 0 if use_pupil_lens != 0 or pinhole_diam_m != 0: proper.prop_circular_aperture(wavefront, 1.1, NORM=True) proper.prop_propagate(wavefront, d_lyotstop_oap7, 'OAP7') proper.prop_lens(wavefront, fl_oap7) if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_OAP7_phase_error_V1.0.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_oap7 / 2.0) proper.prop_propagate(wavefront, d_oap7_fieldstop, 'FIELD_STOP') if use_field_stop != 0 and (cor_type == 'hlc' or cor_type == 'hlc_erkin'): sampling_lamD = float( pupil_diam_pix) / n # sampling at focus in lambda_m/D stop_radius = field_stop_radius_lam0 / sampling_lamD * ( lambda0_m / lambda_m) * proper.prop_get_sampling(wavefront) if field_stop_x_offset != 0 or field_stop_y_offset != 0: # convert offsets in lambda0/D to meters x_offset_lamD = field_stop_x_offset * lambda0_m / lambda_m y_offset_lamD = field_stop_y_offset * lambda0_m / lambda_m pupil_ratio = float(pupil_diam_pix) / n field_stop_x_offset_m = x_offset_lamD / pupil_ratio * proper.prop_get_sampling( wavefront) field_stop_y_offset_m = y_offset_lamD / pupil_ratio * proper.prop_get_sampling( wavefront) proper.prop_circular_aperture(wavefront, stop_radius, -field_stop_x_offset_m, -field_stop_y_offset_m) proper.prop_propagate(wavefront, d_fieldstop_oap8, 'OAP8') proper.prop_lens(wavefront, fl_oap8) if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_OAP8_phase_error_V1.0.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_oap8 / 2.0) proper.prop_propagate(wavefront, d_oap8_filter, 'filter') if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_FILTER_phase_error_V1.0.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_filter / 2.0) proper.prop_propagate(wavefront, d_filter_lens, 'LENS') if use_pupil_lens == 0 and use_defocus_lens == 0 and defocus == 0: # use imaging lens to create normal focus proper.prop_lens(wavefront, fl_lens) if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_LENS_phase_error_V1.0.fits', WAVEFRONT=True) elif use_pupil_lens != 0: # use pupil imaging lens proper.prop_lens(wavefront, fl_pupillens) if use_errors != 0: proper.prop_errormap( wavefront, map_dir + 'wfirst_phaseb_PUPILLENS_phase_error_V1.0.fits', WAVEFRONT=True) else: # table is waves P-V @ 575 nm z4_pv_waves = np.array([ -9.0545, -8.5543, -8.3550, -8.0300, -7.54500, -7.03350, -6.03300, -5.03300, -4.02000, -2.51980, 0.00000000, 3.028000, 4.95000, 6.353600, 8.030000, 10.10500, 12.06000, 14.06000, 20.26000, 28.34000, 40.77500, 56.65700 ]) fl_defocus_lens = np.array([ 5.09118, 1.89323, 1.54206, 1.21198, 0.914799, 0.743569, 0.567599, 0.470213, 0.406973, 0.350755, 0.29601868, 0.260092, 0.24516, 0.236606, 0.228181, 0.219748, 0.213278, 0.207816, 0.195536, 0.185600, 0.176629, 0.169984 ]) # subtract ad-hoc function to make z4 vs f_length more accurately spline interpolatible f = fl_defocus_lens / 0.005 f0 = 59.203738 z4t = z4_pv_waves - (0.005 * (f0 - f - 40)) / f**2 / 0.575e-6 if use_defocus_lens != 0: # use one of 4 defocusing lenses defocus = np.array([18.0, 9.0, -4.0, -8.0]) # waves P-V @ 575 nm f = interp1d(z4_pv_waves, z4t, kind='cubic') z4x = f(defocus) f = interp1d(z4t, fl_defocus_lens, kind='cubic') lens_fl = f(z4x) proper.prop_lens(wavefront, lens_fl[use_defocus_lens - 1]) if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_DEFOCUSLENS' + str(use_defocus_lens) + '_phase_error_V1.0.fits', WAVEFRONT=True) defocus = defocus[use_defocus_lens - 1] else: # specify amount of defocus (P-V waves @ 575 nm) f = interp1d(z4_pv_waves, z4t, kind='cubic') z4x = f(defocus) f = interp1d(z4t, fl_defocus_lens, kind='cubic') lens_fl = f(z4x) proper.prop_lens(wavefront, lens_fl) if use_errors != 0: proper.prop_errormap( wavefront, map_dir + 'wfirst_phaseb_DEFOCUSLENS1_phase_error_V1.0.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_lens / 2.0) proper.prop_propagate(wavefront, d_lens_fold4, 'FOLD_4') if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_FOLD4_phase_error_V1.1.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_fold4 / 2.0) if defocus != 0 or use_defocus_lens != 0: if np.abs(defocus) <= 4: proper.prop_propagate(wavefront, d_fold4_image, 'IMAGE', TO_PLANE=True) else: proper.prop_propagate(wavefront, d_fold4_image, 'IMAGE') else: proper.prop_propagate(wavefront, d_fold4_image, 'IMAGE') (wavefront, sampling_m) = proper.prop_end(wavefront, NOABS=True) if final_sampling_lam0 != 0 or final_sampling_m != 0: if final_sampling_m != 0: mag = sampling_m / final_sampling_m sampling_m = final_sampling_m else: mag = (float(pupil_diam_pix) / n) / final_sampling_lam0 * (lambda_m / lambda0_m) sampling_m = sampling_m / mag wavefront = proper.prop_magnify(wavefront, mag, output_dim, AMP_CONSERVE=True) else: wavefront = trim(wavefront, output_dim) return wavefront, sampling_m
def wfirst_phaseb_compact(lambda_m, output_dim0, PASSVALUE={'dummy': 0}): # "output_dim" is used to specify the output dimension in pixels at the final image plane. # Computational grid sizes are hardcoded for each coronagraph. # Based on Zemax prescription "WFIRST_CGI_DI_LOWFS_Sep24_2018.zmx" by Hong Tang. data_dir = wfirst_phaseb_proper.data_dir if 'PASSVALUE' in locals(): if 'data_dir' in PASSVALUE: data_dir = PASSVALUE['data_dir'] cor_type = 'hlc' # coronagraph type ('hlc', 'spc', 'none') input_field_rootname = '' # rootname of files containing aberrated pupil polaxis = 0 # polarization condition (only used with input_field_rootname) source_x_offset = 0 # source offset in lambda0_m/D radians (tilt applied at primary) source_y_offset = 0 use_hlc_dm_patterns = 0 # use Dwight's HLC default DM wavefront patterns? 1 or 0 use_dm1 = 0 # use DM1? 1 or 0 use_dm2 = 0 # use DM2? 1 or 0 dm_sampling_m = 0.9906e-3 # actuator spacing in meters dm1_xc_act = 23.5 # for 48x48 DM, wavefront centered at actuator intersections: (0,0) = 1st actuator center dm1_yc_act = 23.5 dm1_xtilt_deg = 0 # tilt around X axis (deg) dm1_ytilt_deg = 5.7 # effective DM tilt in deg including 9.65 deg actual tilt and pupil ellipticity dm1_ztilt_deg = 0 # rotation of DM about optical axis (deg) dm2_xc_act = 23.5 # for 48x48 DM, wavefront centered at actuator intersections: (0,0) = 1st actuator center dm2_yc_act = 23.5 dm2_xtilt_deg = 0 # tilt around X axis (deg) dm2_ytilt_deg = 5.7 # effective DM tilt in deg including 9.65 deg actual tilt and pupil ellipticity dm2_ztilt_deg = 0 # rotation of DM about optical axis (deg) fpm_axis = 'p' # HLC FPM axis: '', 's', 'p' final_sampling_lam0 = 0 # final sampling in lambda0/D output_dim = output_dim0 # dimension of output in pixels (overrides output_dim0) if 'PASSVALUE' in locals(): if 'cor_type' in PASSVALUE: cor_type = PASSVALUE['cor_type'] if 'fpm_axis' in PASSVALUE: fpm_axis = PASSVALUE['fpm_axis'] is_hlc = False is_spc = False if cor_type == 'hlc': is_hlc = True file_directory = data_dir + '/hlc_20190210/' # must have trailing "/" prefix = file_directory + 'run461_' pupil_diam_pix = 309.0 pupil_file = prefix + 'pupil_rotated.fits' lyot_stop_file = prefix + 'lyot.fits' lambda0_m = 0.575e-6 lam_occ = [ 5.4625e-07, 5.49444444444e-07, 5.52638888889e-07, 5.534375e-07, 5.55833333333e-07, 5.59027777778e-07, 5.60625e-07, 5.62222222222e-07, 5.65416666667e-07, 5.678125e-07, 5.68611111111e-07, 5.71805555556e-07, 5.75e-07, 5.78194444444e-07, 5.81388888889e-07, 5.821875e-07, 5.84583333333e-07, 5.87777777778e-07, 5.89375e-07, 5.90972222222e-07, 5.94166666667e-07, 5.965625e-07, 5.97361111111e-07, 6.00555555556e-07, 6.0375e-07 ] lam_occs = [ '5.4625e-07', '5.49444444444e-07', '5.52638888889e-07', '5.534375e-07', '5.55833333333e-07', '5.59027777778e-07', '5.60625e-07', '5.62222222222e-07', '5.65416666667e-07', '5.678125e-07', '5.68611111111e-07', '5.71805555556e-07', '5.75e-07', '5.78194444444e-07', '5.81388888889e-07', '5.821875e-07', '5.84583333333e-07', '5.87777777778e-07', '5.89375e-07', '5.90972222222e-07', '5.94166666667e-07', '5.965625e-07', '5.97361111111e-07', '6.00555555556e-07', '6.0375e-07' ] lam_occs = [ prefix + 'occ_lam' + s + 'theta6.69pol' + fpm_axis + '_' for s in lam_occs ] # find nearest matching FPM wavelength wlam = (np.abs(lambda_m - np.array(lam_occ))).argmin() occulter_file_r = lam_occs[wlam] + 'real_rotated.fits' occulter_file_i = lam_occs[wlam] + 'imag_rotated.fits' n_small = 1024 # gridsize in non-critical areas n_big = 2048 # gridsize to/from FPM elif cor_type == 'hlc_erkin': is_hlc = True file_directory = data_dir + '/hlc_20190206_v3/' # must have trailing "/" prefix = file_directory + 'dsn17d_run2_pup310_fpm2048_' pupil_diam_pix = 310.0 pupil_file = prefix + 'pupil.fits' lyot_stop_file = prefix + 'lyot.fits' lambda0_m = 0.575e-6 lam_occ = [ 5.4625e-07, 5.4944e-07, 5.5264e-07, 5.5583e-07, 5.5903e-07, 5.6222e-07, 5.6542e-07, 5.6861e-07, 5.7181e-07, 5.75e-07, 5.7819e-07, 5.8139e-07, 5.8458e-07, 5.8778e-07, 5.9097e-07, 5.9417e-07, 5.9736e-07, 6.0056e-07, 6.0375e-07 ] lam_occs = [ '5.4625e-07', '5.4944e-07', '5.5264e-07', '5.5583e-07', '5.5903e-07', '5.6222e-07', '5.6542e-07', '5.6861e-07', '5.7181e-07', '5.75e-07', '5.7819e-07', '5.8139e-07', '5.8458e-07', '5.8778e-07', '5.9097e-07', '5.9417e-07', '5.9736e-07', '6.0056e-07', '6.0375e-07' ] fpm_axis = 's' lam_occs = [ prefix + 'occ_lam' + s + 'theta6.69pol' + fpm_axis + '_' for s in lam_occs ] # find nearest matching FPM wavelength wlam = (np.abs(lambda_m - np.array(lam_occ))).argmin() occulter_file_r = lam_occs[wlam] + 'real.fits' occulter_file_i = lam_occs[wlam] + 'imag.fits' n_small = 1024 # gridsize in non-critical areas n_big = 2048 # gridsize to/from FPM elif cor_type == 'spc-ifs_short' or cor_type == 'spc-ifs_long' or cor_type == 'spc-spec_short' or cor_type == 'spc-spec_long': is_spc = True file_dir = data_dir + '/spc_20190130/' # must have trailing "/" pupil_diam_pix = 1000.0 pupil_file = file_dir + 'pupil_SPC-20190130_rotated.fits' pupil_mask_file = file_dir + 'SPM_SPC-20190130_rotated.fits' fpm_file = file_dir + 'fpm_0.05lamdivD.fits' fpm_sampling = 0.05 # sampling in lambda0/D of FPM mask if cor_type == 'spc-ifs_short' or cor_type == 'spc-spec_short': fpm_sampling_lambda_m = 0.66e-6 lambda0_m = 0.66e-6 else: fpm_sampling_lambda_m = 0.73e-6 lambda0_m = 0.73e-6 # FPM scaled for this central wavelength lyot_stop_file = file_dir + 'lyotstop_0.5mag.fits' n_small = 2048 # gridsize in non-critical areas n_big = 1400 # gridsize to FPM (propagation to/from FPM handled by MFT) elif cor_type == 'spc-wide': is_spc = True file_dir = data_dir + '/spc_20181220/' # must have trailing "/" pupil_diam_pix = 1000.0 pupil_file = file_dir + 'pupil_SPC-20181220_1k_rotated.fits' pupil_mask_file = file_dir + 'SPM_SPC-20181220_1000_rounded9_gray_rotated.fits' fpm_file = file_dir + 'fpm_0.05lamdivD.fits' fpm_sampling = 0.05 # sampling in lambda0/D of FPM mask lyot_stop_file = file_dir + 'LS_half_symm_CGI180718_Str3.20pct_38D91_N500_pixel.fits' fpm_sampling_lambda_m = 0.825e-6 lambda0_m = 0.825e-6 # FPM scaled for this central wavelength n_small = 2048 # gridsize in non-critical areas n_big = 1400 # gridsize to FPM (propagation to/from FPM handled by MFT) elif cor_type == 'none': file_directory = data_dir + '/hlc_20190210/' # must have trailing "/" prefix = file_directory + 'run461_' pupil_diam_pix = 309.0 pupil_file = prefix + 'pupil_rotated.fits' use_fpm = 0 use_lyot_stop = 0 n_small = 1024 n_big = 1024 else: raise Exception('wfirst_phaseb_compact: Unsuported cor_type: ' + cor_type) if 'PASSVALUE' in locals(): if 'lam0' in PASSVALUE: lamba0_m = PASSVALUE['lam0'] * 1.0e-6 if 'lambda0_m' in PASSVALUE: lambda0_m = PASSVALUE['lambda0_m'] if 'input_field_rootname' in PASSVALUE: input_field_rootname = PASSVALUE['input_field_rootname'] if 'polaxis' in PASSVALUE: polaxis = PASSVALUE['polaxis'] if 'source_x_offset' in PASSVALUE: source_x_offset = PASSVALUE['source_x_offset'] if 'source_y_offset' in PASSVALUE: source_y_offset = PASSVALUE['source_y_offset'] if 'use_hlc_dm_patterns' in PASSVALUE: use_hlc_dm_patterns = PASSVALUE['use_hlc_dm_patterns'] if 'use_dm1' in PASSVALUE: use_dm1 = PASSVALUE['use_dm1'] if 'dm1_m' in PASSVALUE: dm1_m = PASSVALUE['dm1_m'] if 'dm1_xc_act' in PASSVALUE: dm1_xc_act = PASSVALUE['dm1_xc_act'] if 'dm1_yc_act' in PASSVALUE: dm1_yc_act = PASSVALUE['dm1_yc_act'] if 'dm1_xtilt_deg' in PASSVALUE: dm1_xtilt_deg = PASSVALUE['dm1_xtilt_deg'] if 'dm1_ytilt_deg' in PASSVALUE: dm1_ytilt_deg = PASSVALUE['dm1_ytilt_deg'] if 'dm1_ztilt_deg' in PASSVALUE: dm1_ztilt_deg = PASSVALUE['dm1_ztilt_deg'] if 'use_dm2' in PASSVALUE: use_dm2 = PASSVALUE['use_dm2'] if 'dm2_m' in PASSVALUE: dm2_m = PASSVALUE['dm2_m'] if 'dm2_xc_act' in PASSVALUE: dm2_xc_act = PASSVALUE['dm2_xc_act'] if 'dm2_yc_act' in PASSVALUE: dm2_yc_act = PASSVALUE['dm2_yc_act'] if 'dm2_xtilt_deg' in PASSVALUE: dm2_xtilt_deg = PASSVALUE['dm2_xtilt_deg'] if 'dm2_ytilt_deg' in PASSVALUE: dm2_ytilt_deg = PASSVALUE['dm2_ytilt_deg'] if 'dm2_ztilt_deg' in PASSVALUE: dm2_ztilt_deg = PASSVALUE['dm2_ztilt_deg'] if 'final_sampling_lam0' in PASSVALUE: final_sampling_lam0 = PASSVALUE['final_sampling_lam0'] if 'output_dim' in PASSVALUE: output_dim = PASSVALUE['output_dim'] if polaxis != 0 and input_field_rootname == '': raise Exception( 'wfirst_phaseb_compact: polaxis can only be defined when input_field_rootname is given' ) diam_at_dm1 = 0.0463 d_dm1_dm2 = 1.0 n = n_small # start off with less padding wavefront = proper.prop_begin(diam_at_dm1, lambda_m, n, float(pupil_diam_pix) / n) if input_field_rootname == '': pupil = proper.prop_fits_read(pupil_file) proper.prop_multiply(wavefront, trim(pupil, n)) pupil = 0 else: lams = format(lambda_m * 1e6, "6.4f") pols = format(int(round(polaxis))) rval = proper.prop_fits_read(input_field_rootname + '_' + lams + 'um_' + pols + '_real.fits') ival = proper.prop_fits_read(input_field_rootname + '_' + lams + 'um_' + pols + '_imag.fits') proper.prop_multiply(wavefront, trim(rval + 1j * ival, n)) rval = 0 ival = 0 proper.prop_define_entrance(wavefront) if source_x_offset != 0 or source_y_offset != 0: # compute tilted wavefront to offset source by xoffset,yoffset lambda0_m/D xtilt_lam = -source_x_offset * lambda0_m / lambda_m ytilt_lam = -source_y_offset * lambda0_m / lambda_m x = np.tile((np.arange(n) - n // 2) / (pupil_diam_pix / 2.0), (n, 1)) y = np.transpose(x) proper.prop_multiply( wavefront, np.exp(complex(0, 1) * np.pi * (xtilt_lam * x + ytilt_lam * y))) x = 0 y = 0 if use_dm1 != 0: prop_dm(wavefront, dm1_m, dm1_xc_act, dm1_yc_act, dm_sampling_m, XTILT=dm1_xtilt_deg, YTILT=dm1_ytilt_deg, ZTILT=dm1_ztilt_deg) if is_hlc == True and use_hlc_dm_patterns == 1: dm1wfe = proper.prop_fits_read(prefix + 'dm1wfe.fits') proper.prop_add_phase(wavefront, trim(dm1wfe, n)) dm1wfe = 0 proper.prop_propagate(wavefront, d_dm1_dm2, 'DM2') if use_dm2 == 1: prop_dm(wavefront, dm2_m, dm2_xc_act, dm2_yc_act, dm_sampling_m, XTILT=dm2_xtilt_deg, YTILT=dm2_ytilt_deg, ZTILT=dm2_ztilt_deg) if is_hlc == True: if use_hlc_dm_patterns == 1: dm2wfe = proper.prop_fits_read(prefix + 'dm2wfe.fits') proper.prop_add_phase(wavefront, trim(dm2wfe, n)) dm2wfe = 0 dm2mask = proper.prop_fits_read(prefix + 'dm2mask.fits') proper.prop_multiply(wavefront, trim(dm2mask, n)) dm2mask = 0 proper.prop_propagate(wavefront, -d_dm1_dm2, 'back to DM1') (wavefront, sampling_m) = proper.prop_end(wavefront, NOABS=True) # apply shape pupil mask if is_spc == True: pupil_mask = proper.prop_fits_read(pupil_mask_file) wavefront *= trim(pupil_mask, n) pupil_mask = 0 # propagate to FPM and apply FPM if is_hlc == True: n = n_big wavefront = trim(wavefront, n) wavefront = ffts(wavefront, -1) # to focus occ_r = proper.prop_fits_read(occulter_file_r) occ_i = proper.prop_fits_read(occulter_file_i) occ = np.array(occ_r + 1j * occ_i, dtype=np.complex128) wavefront *= trim(occ, n) occ_r = 0 occ_i = 0 occ = 0 wavefront = ffts(wavefront, +1) # to lyot stop elif is_spc == True: n = n_big wavefront = trim(wavefront, n) fpm = proper.prop_fits_read(fpm_file) nfpm = fpm.shape[1] fpm_sampling_lam = fpm_sampling * fpm_sampling_lambda_m / lambda_m wavefront = mft2(wavefront, fpm_sampling_lam, pupil_diam_pix, nfpm, -1) # MFT to highly-sampled focal plane wavefront *= fpm fpm = 0 pupil_diam_pix = pupil_diam_pix / 2.0 # Shrink pupil by 1/2 wavefront = mft2(wavefront, fpm_sampling_lam, pupil_diam_pix, int(pupil_diam_pix), +1) # MFT to Lyot stop with 1/2 magnification n = n_small wavefront = trim(wavefront, n) lyot = proper.prop_fits_read(lyot_stop_file) wavefront *= trim(lyot, n) lyot = 0 wavefront *= n wavefront = ffts(wavefront, -1) # to focus # rotate to convention used by full prescription wavefront[:, :] = np.rot90(wavefront, 2) wavefront[:, :] = np.roll(wavefront, 1, axis=0) wavefront[:, :] = np.roll(wavefront, 1, axis=1) if final_sampling_lam0 != 0: mag = (float(pupil_diam_pix) / n) / final_sampling_lam0 * (lambda_m / lambda0_m) wavefront = proper.prop_magnify(wavefront, mag, output_dim, AMP_CONSERVE=True) else: wavefront = trim(wavefront, output_dim) sampling_m = 0.0 return wavefront, sampling_m