def test_custom_seasonality(self): holidays = pd.DataFrame({ 'ds': pd.to_datetime(['2017-01-02']), 'holiday': ['special_day'], 'prior_scale': [4.], }) m = Prophet(holidays=holidays) m.add_seasonality(name='monthly', period=30, fourier_order=5, prior_scale=2.) self.assertEqual( m.seasonalities['monthly'], { 'period': 30, 'fourier_order': 5, 'prior_scale': 2., 'mode': 'additive', 'condition_name': None }, ) with self.assertRaises(ValueError): m.add_seasonality(name='special_day', period=30, fourier_order=5) with self.assertRaises(ValueError): m.add_seasonality(name='trend', period=30, fourier_order=5) m.add_seasonality(name='weekly', period=30, fourier_order=5) # Test fourier order <= 0 m = Prophet() with self.assertRaises(ValueError): m.add_seasonality(name='weekly', period=7, fourier_order=0) with self.assertRaises(ValueError): m.add_seasonality(name='weekly', period=7, fourier_order=-1) # Test priors m = Prophet(holidays=holidays, yearly_seasonality=False, seasonality_mode='multiplicative') m.add_seasonality(name='monthly', period=30, fourier_order=5, prior_scale=2., mode='additive') m.fit(DATA.copy()) self.assertEqual(m.seasonalities['monthly']['mode'], 'additive') self.assertEqual(m.seasonalities['weekly']['mode'], 'multiplicative') seasonal_features, prior_scales, component_cols, modes = ( m.make_all_seasonality_features(m.history)) self.assertEqual(sum(component_cols['monthly']), 10) self.assertEqual(sum(component_cols['special_day']), 1) self.assertEqual(sum(component_cols['weekly']), 6) self.assertEqual(sum(component_cols['additive_terms']), 10) self.assertEqual(sum(component_cols['multiplicative_terms']), 7) if seasonal_features.columns[0] == 'monthly_delim_1': true = [2.] * 10 + [10.] * 6 + [4.] self.assertEqual(sum(component_cols['monthly'][:10]), 10) self.assertEqual(sum(component_cols['weekly'][10:16]), 6) else: true = [10.] * 6 + [2.] * 10 + [4.] self.assertEqual(sum(component_cols['weekly'][:6]), 6) self.assertEqual(sum(component_cols['monthly'][6:16]), 10) self.assertEqual(prior_scales, true)
def test_seasonality_modes(self): # Model with holidays, seasonalities, and extra regressors holidays = pd.DataFrame({ 'ds': pd.to_datetime(['2016-12-25']), 'holiday': ['xmas'], 'lower_window': [-1], 'upper_window': [0], }) m = Prophet(seasonality_mode='multiplicative', holidays=holidays) m.add_seasonality('monthly', period=30, mode='additive', fourier_order=3) m.add_regressor('binary_feature', mode='additive') m.add_regressor('numeric_feature') # Construct seasonal features df = DATA.copy() df['binary_feature'] = [0] * 255 + [1] * 255 df['numeric_feature'] = range(510) df = m.setup_dataframe(df, initialize_scales=True) m.history = df.copy() m.set_auto_seasonalities() seasonal_features, prior_scales, component_cols, modes = ( m.make_all_seasonality_features(df)) self.assertEqual(sum(component_cols['additive_terms']), 7) self.assertEqual(sum(component_cols['multiplicative_terms']), 29) self.assertEqual( set(modes['additive']), { 'monthly', 'binary_feature', 'additive_terms', 'extra_regressors_additive' }, ) self.assertEqual( set(modes['multiplicative']), { 'weekly', 'yearly', 'xmas', 'numeric_feature', 'multiplicative_terms', 'extra_regressors_multiplicative', 'holidays', }, )
def test_conditional_custom_seasonality(self): m = Prophet(weekly_seasonality=False, yearly_seasonality=False) m.add_seasonality(name='conditional_weekly', period=7, fourier_order=3, prior_scale=2., condition_name='is_conditional_week') m.add_seasonality(name='normal_monthly', period=30.5, fourier_order=5, prior_scale=2.) df = DATA.copy() with self.assertRaises(ValueError): # Require all conditions names in df m.fit(df) df['is_conditional_week'] = [0] * 255 + [2] * 255 with self.assertRaises(ValueError): # Require boolean compatible values m.fit(df) df['is_conditional_week'] = [0] * 255 + [1] * 255 m.fit(df) self.assertEqual( m.seasonalities['conditional_weekly'], { 'period': 7, 'fourier_order': 3, 'prior_scale': 2., 'mode': 'additive', 'condition_name': 'is_conditional_week' }, ) self.assertIsNone(m.seasonalities['normal_monthly']['condition_name']) seasonal_features, prior_scales, component_cols, modes = ( m.make_all_seasonality_features(m.history)) # Confirm that only values without is_conditional_week has non zero entries conditional_weekly_columns = seasonal_features.columns[ seasonal_features.columns.str.startswith('conditional_weekly')] self.assertTrue( np.array_equal( (seasonal_features[conditional_weekly_columns] != 0).any( axis=1).values, df['is_conditional_week'].values))
def test_added_regressors(self): m = Prophet() m.add_regressor('binary_feature', prior_scale=0.2) m.add_regressor('numeric_feature', prior_scale=0.5) m.add_regressor('numeric_feature2', prior_scale=0.5, mode='multiplicative') m.add_regressor('binary_feature2', standardize=True) df = DATA.copy() df['binary_feature'] = ['0'] * 255 + ['1'] * 255 df['numeric_feature'] = range(510) df['numeric_feature2'] = range(510) with self.assertRaises(ValueError): # Require all regressors in df m.fit(df) df['binary_feature2'] = [1] * 100 + [0] * 410 m.fit(df) # Check that standardizations are correctly set self.assertEqual( m.extra_regressors['binary_feature'], { 'prior_scale': 0.2, 'mu': 0, 'std': 1, 'standardize': 'auto', 'mode': 'additive', }, ) self.assertEqual(m.extra_regressors['numeric_feature']['prior_scale'], 0.5) self.assertEqual(m.extra_regressors['numeric_feature']['mu'], 254.5) self.assertAlmostEqual(m.extra_regressors['numeric_feature']['std'], 147.368585, places=5) self.assertEqual(m.extra_regressors['numeric_feature2']['mode'], 'multiplicative') self.assertEqual(m.extra_regressors['binary_feature2']['prior_scale'], 10.) self.assertAlmostEqual(m.extra_regressors['binary_feature2']['mu'], 0.1960784, places=5) self.assertAlmostEqual(m.extra_regressors['binary_feature2']['std'], 0.3974183, places=5) # Check that standardization is done correctly df2 = m.setup_dataframe(df.copy()) self.assertEqual(df2['binary_feature'][0], 0) self.assertAlmostEqual(df2['numeric_feature'][0], -1.726962, places=4) self.assertAlmostEqual(df2['binary_feature2'][0], 2.022859, places=4) # Check that feature matrix and prior scales are correctly constructed seasonal_features, prior_scales, component_cols, modes = ( m.make_all_seasonality_features(df2)) self.assertEqual(seasonal_features.shape[1], 30) names = ['binary_feature', 'numeric_feature', 'binary_feature2'] true_priors = [0.2, 0.5, 10.] for i, name in enumerate(names): self.assertIn(name, seasonal_features) self.assertEqual(sum(component_cols[name]), 1) self.assertEqual( sum(np.array(prior_scales) * component_cols[name]), true_priors[i], ) # Check that forecast components are reasonable future = pd.DataFrame({ 'ds': ['2014-06-01'], 'binary_feature': [0], 'numeric_feature': [10], 'numeric_feature2': [10], }) with self.assertRaises(ValueError): m.predict(future) future['binary_feature2'] = 0 fcst = m.predict(future) self.assertEqual(fcst.shape[1], 37) self.assertEqual(fcst['binary_feature'][0], 0) self.assertAlmostEqual( fcst['extra_regressors_additive'][0], fcst['numeric_feature'][0] + fcst['binary_feature2'][0], ) self.assertAlmostEqual( fcst['extra_regressors_multiplicative'][0], fcst['numeric_feature2'][0], ) self.assertAlmostEqual( fcst['additive_terms'][0], fcst['yearly'][0] + fcst['weekly'][0] + fcst['extra_regressors_additive'][0], ) self.assertAlmostEqual( fcst['multiplicative_terms'][0], fcst['extra_regressors_multiplicative'][0], ) self.assertAlmostEqual( fcst['yhat'][0], fcst['trend'][0] * (1 + fcst['multiplicative_terms'][0]) + fcst['additive_terms'][0], ) # Check works if constant extra regressor at 0 df['constant_feature'] = 0 m = Prophet() m.add_regressor('constant_feature') m.fit(df) self.assertEqual(m.extra_regressors['constant_feature']['std'], 1)