def _default(self, model, fit=False): if fit: self._modelfile = tempfile().name model = model or self._modelfile assert model is not None argv = map(str, self._argv) argv += ["--dimensionality", self._dim] argv += [("--test_file", "--training_file")[fit], self._data] argv += [("--model_in", "--model_out")[fit], model] if not fit: outfile = tempfile().name argv += ["--cluster_mapping_out", outfile] call(argv, verbose=self.verbose) X, y = read_svmlight(outfile) return X.todense() else: call(argv, verbose=self.verbose) self._modelfile = model
def _default(self, argv, X, Y=None): infile, descfile = WiseRFRegressor._make_wiserf_csvs(X, Y) argv += ["--in-file", infile] argv += ["--desc-file", descfile] call(argv, verbose=self.verbose)
def _default(self, argv): argv += ["--dimensionality", str(self._dim)] call(argv, verbose=self.verbose)