예제 #1
0
        val_loss.append(loss.item())
        val_acc.append(acc.item())

        postfix_dict = {"val_loss": loss.item(), "val_acc": acc.item()}
        val_trange.set_postfix(**postfix_dict)

    avg_loss = np.mean(val_loss[-600:])
    avg_acc = np.mean(val_acc[-600:])
    postfix = ' (Best)' if avg_acc >= best_acc else ' (Best: {})'.format(
        best_acc)
    print('Avg Val Loss: {}, Avg Val Acc: {}{}'.format(avg_loss, avg_acc,
                                                       postfix))

    if avg_acc >= best_acc:
        best_acc = avg_acc
        best_model = copy.deepcopy(model.state_dict())
        best_generator = copy.deepcopy(generator.state_dict())
    if epoch % 5 == 0 and best_model != None:
        torch.save(best_model, model_path)
        torch.save(best_generator, generator_path)

        print("model saved! - {}".format(model_path))

    # init sampler
    train_sampler = BatchSampler('train', train_dataset.labels, N_way,
                                 sample_per_class, episodes)
    train_dataloader = DataLoader(train_dataset,
                                  batch_size=batch_size,
                                  sampler=train_sampler)
#     val_sampler = BatchSampler('val', val_dataset.labels, val_N_way, val_sample_per_class, episodes)
#     val_dataloader = DataLoader(
예제 #2
0
                            device=opts.device)
        val_loss.append(loss.item())
        val_acc.append(acc.item())
    avg_loss = np.mean(val_loss[-opts.iterations:])
    avg_acc = np.mean(val_acc[-opts.iterations:])
    postfix = ' (Best)' if avg_acc >= best_acc else ' (Best: {:.5f})'.format(
        best_acc)
    print_log(
        'Avg Val Loss: {:.5f}, Avg Val Acc: {:.5f}{}'.format(
            avg_loss, avg_acc, postfix), opts.log_file)
    if avg_acc >= best_acc:
        best_acc = avg_acc
        if opts.multi_gpu:
            torch.save(net.module.state_dict(), opts.model_file)
        else:
            torch.save(net.state_dict(), opts.model_file)
        print_log('[epoch {} / iter {}] best model saved to: {}'.format(
            epoch, len(train_db), opts.model_file),
                  file=opts.log_file)
        best_acc = avg_acc
        best_state = net.state_dict()
# TRAINING ENDS

if best_state is not None:
    net.load_state_dict(best_state)  # fixme when multi gpu, net.module()
    print_log('Testing with best model ...', opts.log_file)
    avg_acc = list()
    for epoch in range(10):
        test_iter = iter(test_db)
        for batch in test_iter:
            x, y = batch