def cancelation(self, term_to_cancel, **defaults_config): ''' Deduce and return an equality between self and a form in which the given operand has been canceled on the numerator and denominator. For example, [(a*b)/(b*c)].cancelation(b) would return (a*b)/(b*c) = a / c. Assumptions or previous work might be required to establish that the term_to_cancel is non-zero. ''' from proveit.numbers import Mult, one expr = self eq = TransRelUpdater(expr) if self.numerator == self.denominator == term_to_cancel: # x/x = 1 from . import frac_cancel_complete return frac_cancel_complete.instantiate({x: term_to_cancel}) if term_to_cancel != self.numerator: # try to catch Exp objects here as well? # after all, Exp(term_to_cancel, n) has factors! if (not isinstance(self.numerator, Mult) or term_to_cancel not in self.numerator.operands): raise ValueError("%s not in the numerator of %s" % (term_to_cancel, self)) # Factor the term_to_cancel from the numerator to the left. expr = eq.update(expr.inner_expr().numerator.factorization( term_to_cancel, group_factors=True, group_remainder=True, preserve_all=True)) if term_to_cancel != self.denominator: if (not isinstance(self.denominator, Mult) or term_to_cancel not in self.denominator.operands): raise ValueError("%s not in the denominator of %s" % (term_to_cancel, self)) # Factor the term_to_cancel from the denominator to the left. expr = eq.update(expr.inner_expr().denominator.factorization( term_to_cancel, group_factors=True, group_remainder=True, preserve_all=True)) if expr.numerator == expr.denominator == term_to_cancel: # Perhaps it reduced to the trivial x/x = 1 case via # auto-simplification. expr = eq.update(expr.cancelation(term_to_cancel)) return eq.relation else: # (x*y) / (x*z) = y/z with possible automatic reductions # via 1 eliminations. from . import frac_cancel_left replacements = list(defaults.replacements) if expr.numerator == term_to_cancel: numer_prod = Mult(term_to_cancel, one) _y = one replacements.append( numer_prod.one_elimination(1, preserve_expr=term_to_cancel)) else: _y = expr.numerator.operands[1] if expr.denominator == term_to_cancel: denom_prod = Mult(term_to_cancel, one) _z = one replacements.append( denom_prod.one_elimination(1, preserve_expr=term_to_cancel)) else: _z = expr.denominator.operands[1] expr = eq.update( frac_cancel_left.instantiate({ x: term_to_cancel, y: _y, z: _z }, replacements=replacements, preserve_expr=expr)) return eq.relation
def complex_polar_coordinates(expr, *, radius_must_be_nonneg=True, nonneg_radius_preferred=True, do_include_unit_length_reduction=True, reductions=None): ''' Given an expression, expr, of the complex number polar form, r * exp(i * theta), or something obviously equivalent to this, where r and theta are Real (and r is preferably RealNonNeg) under the given assumptions, return (r, theta) as a tuple pair. If defaults.automation=False, the r and theta must already be known to be RealNonNeg and Real respectively. If defaults.automation=True, we may attempt to prove these through automation. If radius_must_be_nonneg and nonneg_radius_preferred are False, we won't worry about ensuring that r is non-negative (so the result can be ambiguous). If radius_must_be_nonneg is True, a ValueError will be raised if we can't convert to a form where r is known to be non-negative. If expr is not exactly in this complex number polar form and 'reductions' is provided as a set, add to the 'reductions' set an equation that equates the exact form on the left with the original form on the right. This may be useful to use as 'reductions' in instantiations of theorems that employ the complex number polar form so it may perform proper reductions to the desired form. For example, if expr=5 is provided, the added reduction will be 5 * exp(i * 0) = 5. If do_include_unit_length_reduction is True, we will included reductions so that it will reduce from the unit length form as well. For example, if expr=1 is provided, the added reductions will be exp(i * 0) = 1 1 * 1 = 1. This also works in a way that cascades when reducing from the general polar form: 1 * exp(i * 0) = 1 * 1 = 1 Raise ValueError if the expr is not obviously equivalent to a complex number polar form. Also see unit_length_complex_polar_angle. ''' from . import complex_polar_negation, complex_polar_radius_negation from proveit.logic import InSet, Equals from proveit.numbers import deduce_in_number_set, deduce_number_set from proveit.numbers import zero, one, e, i, pi from proveit.numbers import Real, RealNonPos, RealNonNeg, Complex from proveit.numbers import Add, LessEq, Neg, Mult, Exp orig_expr = expr automation = defaults.automation simplify = defaults.auto_simplify if reductions is None: reductions = set() def add_reduction(reduction, _radius, _theta): ''' Add the given reduction. First check that its left and rights sides are as expected: the left should be the polar form and the right should be the original expression. ''' polar_form = Mult(_radius, Exp(e, Mult(i, _theta))) assert (isinstance(reduction, Judgment) and isinstance(reduction.expr, Equals) and reduction.lhs == polar_form and reduction.rhs == orig_expr), ("Reduction, %s, not a judgement " "for %s = %s" % (reduction, polar_form, orig_expr)) if do_include_unit_length_reduction and _radius == one: # As a unit length complex number, let's include the # reduction from the unit length form in case a unit length # formula is applied (cover the bases). # The 'automation' allowed here is negligible (assuming # we have already proven appropriate set membership by this # point). reductions.add(reduction.inner_expr().lhs.eliminate_one( 0, automation=True)) # But prepare for a multi-stage reduction: # 1 * exp[i * theta] = 1 * orig_expr = orig_expr reductions.add( Mult(one, orig_expr).one_elimination(0, automation=True)) elif reduction.lhs != reduction.rhs: reductions.add(reduction) def raise_not_valid_form(extra_msg=None): if extra_msg is None: extra_msg = "" raise ValueError("%s not in a form that is obviously " "reducible from an r * exp(i*theta) form. %s" % (orig_expr, extra_msg)) if (isinstance(expr, Exp) or (isinstance(expr, Neg) and isinstance(expr.operand, Exp))): # exp(i * theta) reduced from 1 * exp(i * theta). # or exp(i * (theta + pi)) reduced from -exp(i * theta). inner_reductions = set() _theta = unit_length_complex_polar_angle(expr, reductions=inner_reductions) deduce_in_number_set(_theta, Complex) deduce_in_number_set(Mult(i, _theta), Complex) deduce_in_number_set(Exp(e, Mult(i, _theta)), Complex) _r = one expr = Mult(_r, Exp(e, Mult(i, _theta))) # reduction: 1*exp(i * theta) = exp(i * theta) reduction = expr.one_elimination(0, preserve_all=True) # reduction: 1*exp(i * theta) = orig_expr if len(inner_reductions) > 0: reduction = reduction.inner_expr().rhs.substitute( inner_reductions.pop().rhs, preserve_all=True) # Add the reduction and return the coordinates. add_reduction(reduction, _r, _theta) return (_r, _theta) elif isinstance(expr, Neg): # expr = -(r*exp(i*theta0)) = r*exp(i*(theta0 + pi)) inner_reductions = set() # obtain the theta of the negated expression. _r, _theta0 = complex_polar_coordinates( expr.operand, radius_must_be_nonneg=radius_must_be_nonneg, nonneg_radius_preferred=nonneg_radius_preferred, reductions=inner_reductions) # theta = theta0 + pi _theta = Add(_theta0, pi) if defaults.auto_simplify: # simplify theta theta_simplification = _theta.simplification() inner_reductions.add(theta_simplification) _theta = theta_simplification.rhs deduce_in_number_set(_theta, Complex) deduce_in_number_set(Mult(i, _theta), Complex) deduce_in_number_set(Exp(e, Mult(i, _theta)), Complex) # reduction: r*exp(i*theta) = orig_expr [via -(r*exp(i*theta0))] reduction = complex_polar_negation.instantiate( { r: _r, theta: _theta0 }, replacements=inner_reductions, auto_simplify=False) # Add the reduction and return the coordinates. add_reduction(reduction, _r, _theta) return (_r, _theta) # Search for an exponentiation factor with base of 'e' and an # imaginary number in the exponent. complex_exp_factor_idx = None if isinstance(expr, Mult): i_factor_idx = None for idx, factor in enumerate(expr.factors): if isinstance(factor, Exp) and factor.base == e: # exp(x) type factor; check for imaginary number in # exponent. contains_imaginary_factor = False sub_expr = factor.exponent if isinstance(sub_expr, Neg): sub_expr = sub_expr.operand if isinstance(sub_expr, Mult): if i in sub_expr.operands.entries: contains_imaginary_factor = True else: contains_imaginary_factor = (sub_expr == i) if contains_imaginary_factor: # Found imaginary number in an exponent. if ((complex_exp_factor_idx is not None) or (i_factor_idx is not None)): # We already have an imaginary number in # an exponent. We can only have one. raise_not_valid_form() complex_exp_factor_idx = idx deduce_in_number_set(sub_expr, Complex) if complex_exp_factor_idx is None: # No exp(i theta) factor. Let's multiply by exp(i * 0). exp_i0 = Exp(e, Mult(i, zero)) expr = Mult(expr, exp_i0) inner_reductions = set() _r, _theta = complex_polar_coordinates( expr, radius_must_be_nonneg=radius_must_be_nonneg, nonneg_radius_preferred=nonneg_radius_preferred, do_include_unit_length_reduction=False, reductions=inner_reductions) assert _theta == zero deduce_in_number_set(exp_i0, Complex) # reduction: r * exp(i * theta) = orig_expr * exp(i * 0) if len(inner_reductions) > 0: reduction = inner_reductions.pop() else: reduction = Equals(expr, expr).conclude_via_reflexivity() # reduction: r * exp(i * theta) = orig_expr reduction = reduction.inner_expr().rhs.simplify( preserve_expr=orig_expr) add_reduction(reduction, _r, _theta) return (_r, _theta) # expr in ... * exp(... * i * ...) * ... form # Obtain the theta from exp(... * i * ...) = exp[i * theta0]. inner_reductions = set() _theta0 = unit_length_complex_polar_angle( expr.factors[complex_exp_factor_idx], reductions=inner_reductions) expr = Mult(*expr.factors.entries[:complex_exp_factor_idx], Exp(e, Mult(i, _theta0)), *expr.factors.entries[complex_exp_factor_idx + 1:]) # reduction: ... * expr[i * theta0] * ... = orig_expr if len(inner_reductions) > 0: reduction = expr.inner_expr().operands[1].substitution( inner_reductions.pop().rhs, preserve_all=True) else: reduction = Equals(expr, expr).conclude_via_reflexivity() if not expr.operands.is_double() or complex_exp_factor_idx != 1: # Pull the exp(i*theta) type factor to the right. # reduction: r0 * exp(i * theta0) = orig_expr for factor in expr.factors: # Deduce the factors are complex numbers ahead of time # in case automation is disabled. deduce_in_number_set(factor, Complex) reduction = reduction.inner_expr().lhs.factor(complex_exp_factor_idx, pull='right', group_remainder=True, preserve_all=True) expr = reduction.lhs # expr: r0 * exp(i * theta0) assert expr.operands.is_double() and isinstance(expr.operands[1], Exp) # Check that r0 is real and that we know it's relation with zero. _r0 = expr.operands[0] _r0_ns = deduce_number_set(_r0).domain if Real.includes(_r0_ns): InSet(_r0, Real).prove() else: raise_not_valid_form("%s not known to be real." % _r0) is_known_nonneg = RealNonNeg.includes(_r0_ns) is_known_nonpos = RealNonPos.includes(_r0_ns) if radius_must_be_nonneg: # We must know the relationship between r0 and 0 so we # can ensure r is non-negative. if not nonneg_radius_preferred: ValueError("nonneg_radius_preferred must be True if " "radius_must_be_nonneg is True.") if not (is_known_nonneg or is_known_nonpos): raise_not_valid_form("Relation of %s to 0 is unknown and " "radius_must_be_nonneg is True." % _r0) if nonneg_radius_preferred and is_known_nonpos: # r0 <= 0, so we must negate it and add pi to the angle. inner_reductions = {reduction} # theta: theta + pi _theta = Add(_theta0, pi) if simplify: # simplify theta theta_simplification = _theta.simplification() inner_reductions.add(theta_simplification) _theta = theta_simplification.rhs # r: -r0 _r = Neg(_r0) if simplify: # simplify radius radius_simplification = _r.simplification() inner_reductions.add(radius_simplification) _r = radius_simplification.rhs # reduction: r*exp(i*theta) = orig_expr [via r0*exp(i*theta0))] reduction = complex_polar_radius_negation.instantiate( { r: _r0, theta: _theta0 }, replacements=inner_reductions, auto_simplify=False) else: _r, _theta = _r0, _theta0 # Add the reduction and return the coordinates. add_reduction(reduction, _r, _theta) return (_r, _theta)