def __init__(self, a, b, *, styles=None): TransitiveRelation.__init__(self, QcircuitEquiv._operator_, a, b, styles=styles) self.a = a self.b = b
def __init__(self, a, b): TransitiveRelation.__init__(self, Equals._operator_, a, b) if self not in Equals.initializing: Equals.initializing.add(self) try: self.deduceInBool() # proactively prove (a=b) in Booleans. except: # may fail before the relevent _axioms_ have been generated pass # and that's okay Equals.initializing.remove(self)
def __init__(self, a, b): TransitiveRelation.__init__(self, SetEquiv._operator_, a, b) if self not in SetEquiv.initializing: SetEquiv.initializing.add(self) try: # proactively prove (a equiv b) in Boolean. self.deduce_in_bool() except BaseException: # may fail before the relevent _axioms_ have been generated pass # and that's okay SetEquiv.initializing.remove(self)
def __init__(self, A, B): TransitiveRelation.__init__(self, Iff._operator_, A, B) self.A = A self.B = B
def __init__(self, a, b): TransitiveRelation.__init__(self, Equals._operator_, a, b) '''
def __init__(self, antecedent, consequent): TransitiveRelation.__init__(self, Implies._operator_, antecedent, consequent) self.antecedent = antecedent self.consequent = consequent
def __init__(self, operator, lhs, rhs, *, styles): TransitiveRelation.__init__(self, operator, lhs, rhs, styles=styles) self.divisor = self.lhs self.dividend = self.rhs
def __init__(self, antecedent, consequent, *, styles=None): TransitiveRelation.__init__( self, Implies._operator_, antecedent, consequent, styles=styles) self.antecedent = antecedent self.consequent = consequent
def __init__(self, A, B, *, styles=None): TransitiveRelation.__init__(self, Iff._operator_, A, B, styles=styles) self.A = A self.B = B