def main(): try: sentences = sys.stdin.readlines() model_file = sys.argv[1] except: raise ValueError('''Usage: cat <file of sentences> | python parse.py <model_file> or, python parse.py <model_file>, type sentences and hit Ctrl+d''') if not os.path.isfile(model_file): raise ValueError('cant find the model file') # scrub list / remove line breaks sentences = [sent.rstrip() for sent in sentences] # generate dependency graph object from sentences depgraphs = [DependencyGraph.from_sentence(sent) for sent in sentences] # load model and parse tp = TransitionParser.load(model_file) parsed = tp.parse(depgraphs) # print to stdout. # can cat this to a conll file for viewing with MaltEval for p in parsed: print(p.to_conll(10).encode('utf-8')) return
def main(): file_to_parse = sys.stdin sentences_list = [s for s in file_to_parse] file_to_parse.close() lang_model = sys.argv[1] tp = TransitionParser.load(lang_model) sentences = [DependencyGraph.from_sentence(s) for s in sentences_list] parsed = tp.parse(sentences) for p in parsed: print p.to_conll(10).encode('utf-8')
def parse(argv): if len(argv) != 2: sys.exit( "python parse.py language.model") # data = dataset.get_english_train_corpus().parsed_sents() # random.seed(1234) # subdata = random.sample(data, 200) language_model = argv[1] try: sentences = sys.stdin.readlines() for i,sentence in enumerate(sentences): dg = DependencyGraph.from_sentence(sentence) tp = TransitionParser.load(language_model) parsed = tp.parse([dg]) print parsed[0].to_conll(10).encode('utf-8') # tp = TransitionParser(Transition, FeatureExtractor) # tp.train(subdata) # tp.save('english.model') # testdata = dataset.get_swedish_test_corpus().parsed_sents() # tp = TransitionParser.load('english.model') # parsed = tp.parse(testdata) #open new file for write on first sentence if i == 0: with open('test.conll', 'w') as f: for p in parsed: f.write(p.to_conll(10).encode('utf-8')) f.write('\n') #append for rest sentences else: with open('test.conll', 'a') as f: for p in parsed: f.write(p.to_conll(10).encode('utf-8')) f.write('\n') # ev = DependencyEvaluator(testdata, parsed) # print "UAS: {} \nLAS: {}".format(*ev.eval()) except NotImplementedError: print """
from providedcode import dataset import sys from providedcode.transitionparser import TransitionParser from providedcode.dependencygraph import DependencyGraph if __name__ == '__main__': testdata = [] for line in sys.stdin: sentence = DependencyGraph.from_sentence(line) testdata.append(sentence) model = sys.argv[1] tp = TransitionParser.load(model) parsed = tp.parse(testdata) for p in parsed: print(p.to_conll(10).encode('utf-8'))
# testdata = dataset.get_swedish_test_corpus().parsed_sents() # tp = TransitionParser.load('badfeatures.model') #parsed = tp.parse(testdata) #with open('test.conll', 'w') as f: # for p in parsed: # f.write(p.to_conll(10).encode('utf-8')) # f.write('\n') #ev = DependencyEvaluator(testdata, parsed) #print "LAS: {} \nUAS: {}".format(*ev.eval()) # parsing arbitrary sentences (english): sentence = DependencyGraph.from_sentence('Hi, this is a test') print sentence print "model loading" tp = TransitionParser.load('badfeatures.model') print "model loaded" print "sentence parsing" parsed = tp.parse([sentence]) print "sentence parsed" print parsed[0].to_conll(10).encode('utf-8') except NotImplementedError: print """ This file is currently broken! We removed the implementation of Transition (in transition.py), which tells the transitionparser how to go from one Configuration to another Configuration. This is an essential part of the arc-eager dependency parsing algorithm, so you should probably fix that :)
# tp = TransitionParser.load('badfeatures.model') # testdata = dataset.get_english_test_corpus().parsed_sents() # tp = TransitionParser.load('english.model') parsed = tp.parse(testdata) with open('test.conll', 'w') as f: for p in parsed: f.write(p.to_conll(10).encode('utf-8')) f.write('\n') ev = DependencyEvaluator(testdata, parsed) print "LAS: {} \nUAS: {}".format(*ev.eval()) # parsing arbitrary sentences (english): sentence = DependencyGraph.from_sentence('Hi, this is a test') tp = TransitionParser.load('english.model') parsed = tp.parse([sentence]) print parsed[0].to_conll(10).encode('utf-8') except NotImplementedError: print """ This file is currently broken! We removed the implementation of Transition (in transition.py), which tells the transitionparser how to go from one Configuration to another Configuration. This is an essential part of the arc-eager dependency parsing algorithm, so you should probably fix that :) The algorithm is described in great detail here: http://aclweb.org/anthology//C/C12/C12-1059.pdf We also haven't actually implemented most of the features for for the
def handle_input(input_file, model_file): tp = TransitionParser.load(model_file) for line in input_file: sentence = DependencyGraph.from_sentence(line) parsed = tp.parse([sentence]) print parsed[0].to_conll(10).encode('utf-8')
import sys from providedcode.transitionparser import TransitionParser from providedcode.dependencygraph import DependencyGraph if __name__ == '__main__': sentences = sys.stdin.readlines() tp = TransitionParser.load(sys.argv[1]) for sentence in sentences: dg = DependencyGraph.from_sentence(sentence) parsed = tp.parse([dg]) print parsed[0].to_conll(10).encode('utf-8') #print '\n'
import sys from providedcode.transitionparser import TransitionParser from providedcode.dependencygraph import DependencyGraph if __name__ == '__main__': # the raw sentences read from englishfile lines = sys.stdin # if no sentences read or not enough parameters retrieved, exit the program. if not lines or not sys.argv.__len__() == 2: exit() # put the raw sentences in to dependency graphs and form a list of these graphs. sentences = [DependencyGraph.from_sentence(line) for line in lines] model_name = sys.argv[1] # load the trained model tp = TransitionParser.load(model_name) # parse the sentences with the model parsed = tp.parse(sentences) # write the parsed sentences into the output file conll supported format. for parsed_line in parsed: print parsed_line.to_conll(10).encode('utf-8') #sentence = DependencyGraph.from_sentence('Hi, this is a test') #tp = TransitionParser.load('english.model') #parsed = tp.parse([sentence]) #print parsed[0].to_conll(10).encode('utf-8')
import random from providedcode.dependencygraph import DependencyGraph from providedcode import dataset from providedcode.transitionparser import TransitionParser from providedcode.evaluate import DependencyEvaluator from featureextractor import FeatureExtractor from transition import Transition import sys if __name__ == "__main__": try: # parsing arbitrary sentences (english): fromInput = "".join(sys.stdin.readlines()) # print fromInput sentence = DependencyGraph.from_sentence(fromInput) tp = TransitionParser.load("english.model") parsed = tp.parse([sentence]) print parsed[0].to_conll(10).encode("utf-8") except NotImplementedError: print """ This file is currently broken! We removed the implementation of Transition (in transition.py), which tells the transitionparser how to go from one Configuration to another Configuration. This is an essential part of the arc-eager dependency parsing algorithm, so you should probably fix that :) The algorithm is described in great detail here: http://aclweb.org/anthology//C/C12/C12-1059.pdf We also haven't actually implemented most of the features for for the support vector machine (in featureextractor.py), so as you might expect the
import sys from providedcode.transitionparser import TransitionParser from providedcode.evaluate import DependencyEvaluator from featureextractor import FeatureExtractor from providedcode.dependencygraph import DependencyGraph from transition import Transition if __name__ == "__main__": sentences = [] try: while 1: sentence = raw_input().strip() sentences.append(DependencyGraph.from_sentence(sentence)) except EOFError: pass tp = TransitionParser.load(sys.argv[1]) parsed = tp.parse(sentences) for p in parsed: print p.to_conll(10).encode("utf-8")
import sys if __name__ == '__main__': try: model = sys.argv[1] tp = TransitionParser.load(model) for line in sys.stdin: # temp = line.strip() # temp = str(temp) # parsing arbitrary sentences (english): # print "[" + temp + "]" temp = line # temp = "Hi, this is a test." sentence = DependencyGraph.from_sentence(temp) for key, dct in sentence.nodes.items(): dct['ctag'] = nltk.tag.mapping.map_tag("en-ptb", "universal", dct['ctag']) parsed = tp.parse([sentence]) print parsed[0].to_conll(10).encode('utf-8') except NotImplementedError: print """ This file is currently broken! We removed the implementation of Transition (in transition.py), which tells the transitionparser how to go from one Configuration to another Configuration. This is an essential part of the arc-eager dependency parsing algorithm, so you should probably fix that :) The algorithm is described in great detail here:
import sys from providedcode.transitionparser import TransitionParser from providedcode.evaluate import DependencyEvaluator from providedcode.dependencygraph import DependencyGraph from nltk.tag import mapping if len(sys.argv) != 2: sys.stderr.write("No model provided.") sys.exit(1) tp = TransitionParser.load(sys.argv[1]) for sentence in sys.stdin: s = DependencyGraph.from_sentence(sentence) #class DependencyGraph, function from_sentence for node in s.nodes: tag = s.nodes[node]['tag'] ctag = mapping.map_tag('wsj','universal',tag) s.nodes[node]['ctag'] = ctag x = tp.parse([s]) print x[0].to_conll(10).encode('utf-8') # model: sys.argv(1) - english.model
import sys from providedcode.transitionparser import TransitionParser from providedcode.dependencygraph import DependencyGraph if __name__ == '__main__': model = sys.argv[1] data = sys.stdin.readlines() for item in data: sentence = DependencyGraph.from_sentence(item) tp = TransitionParser.load(model) parsed = tp.parse([sentence]) print parsed[0].to_conll(10).encode('utf-8') sys.stdout.flush()
__author__ = 'johnfulgoni' import sys from providedcode.dependencygraph import DependencyGraph from providedcode.transitionparser import TransitionParser # DON'T PRINT ANYTHING! OR ELSE IT MESSES THINGS UP if __name__ == '__main__': argc = len(sys.argv) if argc == 2: #print sys.argv[1] # just to see sentence_list = [] for sent in sys.stdin: # get the sentences from the englishfile sentence = DependencyGraph.from_sentence(sent) sentence_list.append(sentence) my_model = sys.argv[1] # should be 'english.model' tp = TransitionParser.load(my_model) parsed = tp.parse(sentence_list) # following the example in test.py # but we're not writing it to a file for p in parsed: print p.to_conll(10).encode('utf-8') print '\n' else: print "Need two arguments" exit(1)
import providedcode from providedcode.transitionparser import TransitionParser from providedcode.dependencygraph import DependencyGraph from providedcode.evaluate import DependencyEvaluator import sys tp = TransitionParser.load('english.model') for line in sys.stdin: sentence = DependencyGraph.from_sentence(line) parsed = tp.parse([sentence]) print parsed[0].to_conll(10).encode('utf-8')
import sys import fileinput from providedcode.transitionparser import TransitionParser from providedcode import dataset from providedcode.dependencygraph import DependencyGraph englishfile = sys.stdin.read() lines = englishfile.split('\n') model = sys.argv[1] tp = TransitionParser.load(model) for line in lines: sentence = DependencyGraph.from_sentence(line.strip()) parsed = tp.parse([sentence]) print parsed[0].to_conll(10).encode('utf-8'), ('\n')