def pr2a(file_prefix=None): lfunc = lorenz.lorenz(16, 45, 4) ts, xxs = rungekutta.rk4(lfunc, 0.0, numpy.array([-13.0, -12.0, 52.0], dtype=numpy.float64), 0.0001, 300000) xs = xxs.transpose()[:, 0] data = numpy.array(zip(xs, ts), dtype=numpy.float64) ms = tispy.mutual("-D", 16000, input=data) tau = first_min(ms) ws = tispy.delay("-d", int(tau), "-m", 7, input=data) x0 = numpy.array([-35, -35], dtype=numpy.float64) zs = numpy.array(zip(ws[100000:, 0], ws[100000:, 5]), dtype=numpy.float64) d_cap = find_loglog_slope(zs, x0, file_prefix=suffixed(file_prefix, "_2a")) print "Lorenz\tembed\td_cap = {0:.6f}".format(d_cap)
def pr2a(file_prefix=None): lfunc = lorenz.lorenz(16, 45, 4) ts, xxs = rungekutta.rk4( lfunc, 0.0, numpy.array([-13.0, -12.0, 52.0], dtype=numpy.float64), 0.0001, 300000) xs = xxs.transpose()[:, 0] data = numpy.array(zip(xs, ts), dtype=numpy.float64) ms = tispy.mutual('-D', 16000, input=data) tau = first_min(ms) ws = tispy.delay('-d', int(tau), '-m', 7, input=data) x0 = numpy.array([-35, -35], dtype=numpy.float64) zs = numpy.array(zip(ws[100000:, 0], ws[100000:, 5]), dtype=numpy.float64) d_cap = find_loglog_slope(zs, x0, file_prefix=suffixed(file_prefix, '_2a')) print 'Lorenz\tembed\td_cap = {0:.6f}'.format(d_cap)
def extrema(): lfunc = lorenz.lorenz(16, 45, 4) ts, xxs = rungekutta.rk4(lfunc, 0.0, numpy.array([-13.0, -12.0, 52.0], dtype=numpy.float64), 0.0001, 300000) xs = xxs.transpose()[:, 0] data = numpy.array(zip(xs, ts), dtype=numpy.float64) ms = tispy.mutual("-D", 16000, input=data) tau = first_min(ms) print "Tau: {0:.6f}".format(tau) ws = tispy.delay("-d", int(tau), "-m", 7, input=data) zs = ws[100000:, :] mins = numpy.empty(7, dtype=numpy.float64) maxs = numpy.empty(7, dtype=numpy.float64) for i in xrange(7): mins[i] = min(zs[:, i]) maxs[i] = max(zs[:, i]) print "Mins: {0}".format(mins) print "Maxs: {0}".format(maxs)
def extrema(): lfunc = lorenz.lorenz(16, 45, 4) ts, xxs = rungekutta.rk4( lfunc, 0.0, numpy.array([-13.0, -12.0, 52.0], dtype=numpy.float64), 0.0001, 300000) xs = xxs.transpose()[:, 0] data = numpy.array(zip(xs, ts), dtype=numpy.float64) ms = tispy.mutual('-D', 16000, input=data) tau = first_min(ms) print 'Tau: {0:.6f}'.format(tau) ws = tispy.delay('-d', int(tau), '-m', 7, input=data) zs = ws[100000:, :] mins = numpy.empty(7, dtype=numpy.float64) maxs = numpy.empty(7, dtype=numpy.float64) for i in xrange(7): mins[i] = min(zs[:, i]) maxs[i] = max(zs[:, i]) print 'Mins: {0}'.format(mins) print 'Maxs: {0}'.format(maxs)