# -*- coding: utf-8 -*- """ Created on Fri Nov 01 09:32:29 2013 @author: Sol """ from psychopy.iohub.datastore.pandas import ioHubPandasDataView file_name='io_stroop.hdf5' event_type='all' output_format='xls' exp_data=ioHubPandasDataView(file_name) outputformat2pandaswrite={'csv':'to_csv','xls':'to_excel','html':'to_html'} out_name=file_name+'.'+output_format sep_index=file_name.rfind(u'.') if sep_index>=0: out_name=file_name[:sep_index]+'.'+output_format print 'Saving %s to %s....'%(file_name,out_name) getattr(exp_data.all_events,outputformat2pandaswrite[output_format])(out_name) print 'Conversion complete.' exp_data.close()
# -*- coding: utf-8 -*- """ Demonstrates how to use two Condition Variables to specify a temporal filter based on a start and end time. With the ConditionVariableBasedIP two columns of the condition variables are used for each start time and each end time; forming the instances of the IP. @author: Sol """ from __future__ import print_function from psychopy.iohub.datastore.pandas import ioHubPandasDataView from psychopy.iohub.datastore.pandas.interestperiod import ConditionVariableBasedIP exp_data=ioHubPandasDataView('io_stroop.hdf5') # Display the first 20 unfiltered MOUSE_MOVE events print('** KEYBOARD_PRESS Events (first 20):') print() print(exp_data.KEYBOARD_PRESS.head(20)) print() # Create a Condition Variable based Interest Period. # Interest Periods define a start and end time; any events that have a # time >= an IP start time and <= an IP end time would be kept after # filtering with the IP. When a ConditionVariableBasedIP is used, you # provide the exp_data.condition_variables data frame and the name of the # condition values column that wil be used to read the ip start and end times from. # ip=ConditionVariableBasedIP(name='cv_ip',source_df=exp_data.condition_variables, start_col_name='TRIAL_START',
# -*- coding: utf-8 -*- """ Created on Fri Nov 01 09:32:29 2013 @author: Sol """ from __future__ import print_function from psychopy.iohub.datastore.pandas import ioHubPandasDataView file_name = 'io_stroop.hdf5' event_type = 'all' output_format = 'xls' exp_data = ioHubPandasDataView(file_name) outputformat2pandaswrite = { 'csv': 'to_csv', 'xls': 'to_excel', 'html': 'to_html' } out_name = file_name + '.' + output_format sep_index = file_name.rfind(u'.') if sep_index >= 0: out_name = file_name[:sep_index] + '.' + output_format print('Saving %s to %s....' % (file_name, out_name)) getattr(exp_data.all_events, outputformat2pandaswrite[output_format])(out_name) print('Conversion complete.')