def dissimilarity(self): resps = self.classify() df = [] dims = self.get_dims() for layer, resps in resps.items(): for g, i in enumerate(range(0, len(resps), 3)): dis = models.dissimilarity(resps[i:i + 3], kind='correlation') n = int(os.path.basename(self.ims[i]).split('os')[0]) df.append([layer, g, n, dims[n], 'non-accidental', dis[1, 0]]) df.append([layer, g, n, dims[n], 'metric', dis[1, 2]]) nap = pandas.DataFrame( df, columns=['layer', 'geon', 'fno', 'dimension', 'kind', 'dist']) self.save(nap, 'nap') return nap
def dissimilarity(self): resps = self.classify() df = [] dims = self.get_dims() for layer, resps in resps.items(): for g,i in enumerate(range(0, len(resps), 3)): dis = models.dissimilarity(resps[i:i+3], kind='correlation') n = int(os.path.basename(self.ims[i]).split('os')[0]) df.append([layer, g, n, dims[n], 'non-accidental', dis[1,0]]) df.append([layer, g, n, dims[n], 'metric', dis[1,2]]) nap = pandas.DataFrame(df, columns=['layer', 'geon', 'fno', 'dimension', 'kind', 'dist']) self.save(nap, 'nap') return nap
def dissimilarity(self): resps = self.classify() dis = models.dissimilarity(resps, kind=self.dissim) self.save(dis, 'dis') return dis
def dissimilarity(self): resps = self.classify() dis = models.dissimilarity(resps, kind=self.dissim) self.save(dis, "dis") return dis