예제 #1
0
 def test_recurrent_mech_inputs_list_of_strings(self):
     with pytest.raises(UtilitiesError) as error_text:
         R = RecurrentTransferMechanism(name='R',
                                        default_variable=[0, 0, 0, 0],
                                        integrator_mode=True)
         R.execute(["one", "two", "three", "four"])
     assert "has non-numeric entries" in str(error_text.value)
예제 #2
0
 def test_recurrent_mech_inputs_list_of_ints(self):
     R = RecurrentTransferMechanism(name='R', default_variable=[0, 0, 0, 0])
     val = R.execute([10, 12, 0, -1])
     np.testing.assert_allclose(val, [[10.0, 12.0, 0, -1]])
     val = R.execute([1, 2, 3, 0])
     np.testing.assert_allclose(
         val, [[1, 2, 3, 0]]
     )  # because recurrent projection is not used when executing: mech is reset each time
예제 #3
0
 def test_recurrent_mech_reduce_fun(self):
     with pytest.raises(TransferError) as error_text:
         R = RecurrentTransferMechanism(name='R',
                                        default_variable=[0, 0, 0, 0],
                                        function=Reduce(),
                                        time_constant=1.0,
                                        integrator_mode=True)
         R.execute([0, 0, 0, 0])
     assert "must be a TRANSFER FUNCTION TYPE" in str(error_text.value)
 def test_recurrent_mech_reinforcement_fun(self):
     with pytest.raises(TransferError) as error_text:
         R = RecurrentTransferMechanism(name='R',
                                        default_variable=[0, 0, 0, 0],
                                        function=Reinforcement(),
                                        smoothing_factor=1.0,
                                        integrator_mode=True)
         R.execute([0, 0, 0, 0])
     assert "must be a TRANSFER FUNCTION TYPE" in str(error_text.value)
예제 #5
0
 def test_recurrent_mech_time_constant_0_8(self):
     R = RecurrentTransferMechanism(name='R',
                                    default_variable=[0, 0, 0, 0],
                                    function=Linear(),
                                    time_constant=0.8,
                                    integrator_mode=True)
     val = R.execute([1, 1, 1, 1])
     np.testing.assert_allclose(val, [[0.8, 0.8, 0.8, 0.8]])
     val = R.execute([1, 1, 1, 1])
     np.testing.assert_allclose(val, [[.96, .96, .96, .96]])
예제 #6
0
 def test_recurrent_mech_time_constant_0_8_initial_0_5(self):
     R = RecurrentTransferMechanism(name='R',
                                    default_variable=[0, 0, 0, 0],
                                    function=Linear(),
                                    time_constant=0.8,
                                    initial_value=np.array(
                                        [[0.5, 0.5, 0.5, 0.5]]),
                                    integrator_mode=True)
     val = R.execute([1, 1, 1, 1])
     np.testing.assert_allclose(val, [[0.9, 0.9, 0.9, 0.9]])
     val = R.execute([1, 2, 3, 4])
     np.testing.assert_allclose(
         val, [[.98, 1.78, 2.5800000000000005, 3.3800000000000003]
               ])  # due to inevitable floating point errors
예제 #7
0
    def test_recurrent_mech_function_psyneulink(self):

        a = Logistic(gain=2, offset=1)

        R = RecurrentTransferMechanism(name='R', size=7, function=a)
        val = R.execute(np.zeros(7))
        np.testing.assert_allclose(val, [np.full(7, 0.2689414213699951)])
예제 #8
0
    def test_recurrent_mech_function_logistic(self):

        R = RecurrentTransferMechanism(name='R',
                                       size=10,
                                       function=Logistic(gain=2, offset=1))
        val = R.execute(np.ones(10))
        np.testing.assert_allclose(val, [np.full(10, 0.7310585786300049)])
예제 #9
0
 def test_recurrent_mech_matrix_auto_hetero_spec_size_4(self):
     R = RecurrentTransferMechanism(name='R', size=4, auto=2.2, hetero=-3)
     val = R.execute([10, 10, 10, 10])
     np.testing.assert_allclose(val, [[10., 10., 10., 10.]])
     np.testing.assert_allclose(R.matrix,
                                [[2.2, -3, -3, -3], [-3, 2.2, -3, -3],
                                 [-3, -3, 2.2, -3], [-3, -3, -3, 2.2]])
     assert isinstance(R.matrix, np.ndarray)
예제 #10
0
 def test_recurrent_mech_time_constant_0_8_initial_1_8(self):
     R = RecurrentTransferMechanism(name='R',
                                    default_variable=[0, 0, 0, 0],
                                    function=Linear(),
                                    time_constant=0.8,
                                    initial_value=np.array(
                                        [[1.8, 1.8, 1.8, 1.8]]),
                                    integrator_mode=True)
     val = R.execute([1, 1, 1, 1])
     np.testing.assert_allclose(val, [[1.16, 1.16, 1.16, 1.16]])
     val = R.execute([2, 2, 2, 2])
     np.testing.assert_allclose(val, [[1.832, 1.832, 1.832, 1.832]])
     val = R.execute([-4, -3, 0, 1])
     np.testing.assert_allclose(val, [[
         -2.8336, -2.0336000000000003, .36639999999999995,
         1.1663999999999999
     ]])
 def test_clip_2d_array(self):
     R = RecurrentTransferMechanism(default_variable=[[0.0, 0.0, 0.0],
                                                      [0.0, 0.0, 0.0],
                                                      [0.0, 0.0, 0.0]],
                                    clip=[-2.0, 2.0])
     assert np.allclose(
         R.execute([[-5.0, -1.0, 5.0], [5.0, -5.0, 1.0], [1.0, 5.0, 5.0]]),
         [[-2.0, -1.0, 2.0], [2.0, -2.0, 1.0], [1.0, 2.0, 2.0]])
예제 #12
0
 def test_recurrent_mech_hetero_matrix_matrix_spec(self):
     R = RecurrentTransferMechanism(name='R',
                                    size=4,
                                    hetero=np.array([[-4, -3, -2, -1]] * 4),
                                    matrix=[[1, 2, 3, 4]] * 4)
     val = R.execute([1, 2, 3, 4])
     np.testing.assert_allclose(val, [[1., 2., 3., 4.]])
     np.testing.assert_allclose(R.matrix,
                                [[1, -3, -2, -1], [-4, 2, -2, -1],
                                 [-4, -3, 3, -1], [-4, -3, -2, 4]])
예제 #13
0
 def test_recurrent_mech_auto_array_matrix_spec(self):
     R = RecurrentTransferMechanism(name='R',
                                    size=4,
                                    auto=[1.1, 2.2, 3.3, 4.4],
                                    matrix=[[1, 2, 3, 4]] * 4)
     val = R.execute([10, 11, 12, 13])
     np.testing.assert_allclose(val, [[10., 11., 12., 13.]])
     np.testing.assert_allclose(
         R.matrix,
         [[1.1, 2, 3, 4], [1, 2.2, 3, 4], [1, 2, 3.3, 4], [1, 2, 3, 4.4]])
예제 #14
0
 def test_recurrent_mech_auto_hetero_matrix_spec_v3(self):
     R = RecurrentTransferMechanism(name='R',
                                    size=4,
                                    auto=[3],
                                    hetero=2,
                                    matrix=[[1, 2, 3, 4]] * 4)
     val = R.execute([1, 2, 3, 4])
     np.testing.assert_allclose(val, [[1., 2., 3., 4.]])
     np.testing.assert_allclose(
         R.matrix, [[3, 2, 2, 2], [2, 3, 2, 2], [2, 2, 3, 2], [2, 2, 2, 3]])
예제 #15
0
    def test_recurrent_mech_matrix_keyword_spec(self):

        for m in MATRIX_KEYWORD_VALUES:
            if m == RANDOM_CONNECTIVITY_MATRIX:
                continue
            R = RecurrentTransferMechanism(name='R', size=4, matrix=m)
            val = R.execute([10, 10, 10, 10])
            np.testing.assert_allclose(val, [[10., 10., 10., 10.]])
            np.testing.assert_allclose(R.recurrent_projection.matrix,
                                       get_matrix(m, R.size[0], R.size[0]))
예제 #16
0
 def test_recurrent_mech_hetero_float_matrix_spec(self):
     # hetero should override off-diagonal only
     R = RecurrentTransferMechanism(name='R',
                                    size=4,
                                    hetero=-2.2,
                                    matrix=[[1, 2, 3, 4]] * 4)
     val = R.execute([1, 2, 3, 4])
     np.testing.assert_allclose(val, [[1., 2., 3., 4.]])
     np.testing.assert_allclose(
         R.matrix, [[1, -2.2, -2.2, -2.2], [-2.2, 2, -2.2, -2.2],
                    [-2.2, -2.2, 3, -2.2], [-2.2, -2.2, -2.2, 4]])
예제 #17
0
 def test_recurrent_mech_auto_matrix_spec(self):
     # auto should override the diagonal only
     R = RecurrentTransferMechanism(name='R',
                                    size=4,
                                    auto=2.2,
                                    matrix=[[1, 2, 3, 4]] * 4)
     val = R.execute([10, 11, 12, 13])
     np.testing.assert_allclose(val, [[10., 11., 12., 13.]])
     np.testing.assert_allclose(
         R.matrix,
         [[2.2, 2, 3, 4], [1, 2.2, 3, 4], [1, 2, 2.2, 4], [1, 2, 3, 2.2]])
예제 #18
0
 def test_recurrent_mech_time_constant_0_8_initial_1_2(self):
     R = RecurrentTransferMechanism(name='R',
                                    default_variable=[0, 0, 0, 0],
                                    function=Linear(),
                                    time_constant=0.8,
                                    initial_value=np.array([[-1, 1, -2,
                                                             2]]),
                                    integrator_mode=True)
     val = R.execute([3, 2, 1, 0])
     np.testing.assert_allclose(
         val, [[2.2, 1.8, .40000000000000013, .3999999999999999]])
예제 #19
0
 def test_recurrent_mech_matrix_hetero_spec(self):
     R = RecurrentTransferMechanism(name='R', size=3, hetero=-1)
     # (7/28/17 CW) these numbers assume that execute() leaves its value in the outputState of the mechanism: if
     # the behavior of execute() changes, feel free to change these numbers
     val = R.execute([-1, -2, -3])
     np.testing.assert_allclose(val, [[-1, -2, -3]])
     assert isinstance(R.matrix, np.ndarray)
     np.testing.assert_allclose(R.matrix,
                                [[1, -1, -1], [-1, 1, -1], [-1, -1, 1]])
     np.testing.assert_allclose(
         run_twice_in_system(R, [1, 2, 3], [10, 11, 12]), [8, 7, 6])
예제 #20
0
 def test_recurrent_mech_auto_hetero_matrix_spec_v1(self):
     # auto and hetero should override matrix
     R = RecurrentTransferMechanism(name='R',
                                    size=4,
                                    auto=[1, 3, 5, 7],
                                    hetero=np.array([[-4, -3, -2, -1]] * 4),
                                    matrix=[[1, 2, 3, 4]] * 4)
     val = R.execute([1, 2, 3, 4])
     np.testing.assert_allclose(val, [[1., 2., 3., 4.]])
     np.testing.assert_allclose(R.matrix,
                                [[1, -3, -2, -1], [-4, 3, -2, -1],
                                 [-4, -3, 5, -1], [-4, -3, -2, 7]])
예제 #21
0
 def test_recurrent_mech_matrix_auto_hetero_matrix_spec(self):
     # when auto, hetero, and matrix are all specified, auto and hetero should take precedence
     R = RecurrentTransferMechanism(name='R',
                                    size=4,
                                    auto=2.2,
                                    hetero=-3,
                                    matrix=[[1, 2, 3, 4]] * 4)
     val = R.execute([10, 10, 10, 10])
     np.testing.assert_allclose(val, [[10., 10., 10., 10.]])
     np.testing.assert_allclose(R.matrix,
                                [[2.2, -3, -3, -3], [-3, 2.2, -3, -3],
                                 [-3, -3, 2.2, -3], [-3, -3, -3, 2.2]])
     assert isinstance(R.matrix, np.ndarray)
예제 #22
0
    def test_recurrent_mech_matrix_other_spec(self):

        specs = [
            np.matrix('1 2; 3 4'),
            np.array([[1, 2], [3, 4]]), [[1, 2], [3, 4]], '1 2; 3 4'
        ]
        for m in specs:
            R = RecurrentTransferMechanism(name='R', size=2, matrix=m)
            val = R.execute([10, 10])
            np.testing.assert_allclose(val, [[10., 10.]])
            assert isinstance(R.matrix, np.ndarray)
            np.testing.assert_allclose(R.matrix, [[1, 2], [3, 4]])
            np.testing.assert_allclose(R.recurrent_projection.matrix,
                                       [[1, 2], [3, 4]])
            assert isinstance(R.recurrent_projection.matrix, np.ndarray)
 def test_recurrent_mech_matrix_hetero_spec(self):
     R = RecurrentTransferMechanism(name='R', size=3, hetero=-1)
     # (7/28/17 CW) these numbers assume that execute() leaves its value in the outputState of the mechanism: if
     # the behavior of execute() changes, feel free to change these numbers
     val = R.execute([-1, -2, -3])
     np.testing.assert_allclose(val, [[-1, -2, -3]])
     assert isinstance(R.matrix, np.ndarray)
     np.testing.assert_allclose(R.matrix,
                                [[0, -1, -1], [-1, 0, -1], [-1, -1, 0]])
     # Execution 1:
     # Recurrent input = [5, 4, 3] | New input = [1, 2, 3] | Total input = [6, 6, 6]
     # Output 1 = [6, 6, 6]
     # Execution 2:
     # Recurrent input =[-12, -12, -12] | New input =  [10, 11, 12] | Total input = [-2, -1, 0]
     # Output 2 =  [-2, -1, 0]
     np.testing.assert_allclose(
         run_twice_in_system(R, [1, 2, 3], [10, 11, 12]), [-2., -1., 0.])
 def test_clip_float(self):
     R = RecurrentTransferMechanism(clip=[-2.0, 2.0])
     assert np.allclose(R.execute(3.0), 2.0)
     assert np.allclose(R.execute(-3.0), -2.0)
 def test_clip_array(self):
     R = RecurrentTransferMechanism(default_variable=[[0.0, 0.0, 0.0]],
                                    clip=[-2.0, 2.0])
     assert np.allclose(R.execute([3.0, 0.0, -3.0]), [2.0, 0.0, -2.0])
예제 #26
0
 def test_recurrent_mech_inputs_list_of_floats(self):
     R = RecurrentTransferMechanism(name='R', size=4)
     val = R.execute([10.0, 10.0, 10.0, 10.0])
     np.testing.assert_allclose(val, [[10.0, 10.0, 10.0, 10.0]])
예제 #27
0
 def test_recurrent_mech_no_inputs(self):
     R = RecurrentTransferMechanism(name='R')
     np.testing.assert_allclose(R.instance_defaults.variable, [[0]])
     val = R.execute([10])
     np.testing.assert_allclose(val, [[10.]])
예제 #28
0
 def test_recurrent_mech_inputs_mismatched_with_default_shorter(self):
     with pytest.raises(MechanismError) as error_text:
         R = RecurrentTransferMechanism(name='R', size=6)
         R.execute([1, 2, 3, 4, 5])
     assert "does not match required length" in str(error_text.value)
예제 #29
0
 def test_recurrent_mech_matrix_auto_hetero_spec_size_1(self):
     R = RecurrentTransferMechanism(name='R', size=1, auto=-2, hetero=4.4)
     val = R.execute([10])
     np.testing.assert_allclose(val, [[10.]])
     assert isinstance(R.matrix, np.ndarray)
     np.testing.assert_allclose(R.matrix, [[-2]])