def test_Transformation(): train_length = 100 ds = ListDataset( [{"start": "2012-01-01", "target": [0.2] * train_length}], freq="1D" ) pred_length = 10 t = transform.Chain( trans=[ transform.AddTimeFeatures( start_field=FieldName.START, target_field=FieldName.TARGET, output_field="time_feat", time_features=[ time_feature.DayOfWeek(), time_feature.DayOfMonth(), time_feature.MonthOfYear(), ], pred_length=pred_length, ), transform.AddAgeFeature( target_field=FieldName.TARGET, output_field="age", pred_length=pred_length, log_scale=True, ), transform.AddObservedValuesIndicator( target_field=FieldName.TARGET, output_field="observed_values" ), transform.VstackFeatures( output_field="dynamic_feat", input_fields=["age", "time_feat"], drop_inputs=True, ), transform.InstanceSplitter( target_field=FieldName.TARGET, is_pad_field=FieldName.IS_PAD, start_field=FieldName.START, forecast_start_field=FieldName.FORECAST_START, train_sampler=transform.ExpectedNumInstanceSampler( num_instances=4 ), past_length=train_length, future_length=pred_length, time_series_fields=["dynamic_feat", "observed_values"], ), ] ) for u in t(iter(ds), is_train=True): print(u)
def test_multi_dim_transformation(is_train): train_length = 10 first_dim: list = list(np.arange(1, 11, 1)) first_dim[-1] = "NaN" second_dim: list = list(np.arange(11, 21, 1)) second_dim[0] = "NaN" ds = ListDataset( data_iter=[{ "start": "2012-01-01", "target": [first_dim, second_dim] }], freq="1D", one_dim_target=False, ) pred_length = 2 # Looks weird - but this is necessary to assert the nan entries correctly. first_dim[-1] = np.nan second_dim[0] = np.nan t = transform.Chain(trans=[ transform.AddTimeFeatures( start_field=FieldName.START, target_field=FieldName.TARGET, output_field="time_feat", time_features=[ time_feature.DayOfWeek(), time_feature.DayOfMonth(), time_feature.MonthOfYear(), ], pred_length=pred_length, ), transform.AddAgeFeature( target_field=FieldName.TARGET, output_field="age", pred_length=pred_length, log_scale=True, ), transform.AddObservedValuesIndicator( target_field=FieldName.TARGET, output_field="observed_values", convert_nans=False, ), transform.VstackFeatures( output_field="dynamic_feat", input_fields=["age", "time_feat"], drop_inputs=True, ), transform.InstanceSplitter( target_field=FieldName.TARGET, is_pad_field=FieldName.IS_PAD, start_field=FieldName.START, forecast_start_field=FieldName.FORECAST_START, train_sampler=transform.ExpectedNumInstanceSampler( num_instances=4), past_length=train_length, future_length=pred_length, time_series_fields=["dynamic_feat", "observed_values"], time_first=False, ), ]) if is_train: for u in t(iter(ds), is_train=True): assert_shape(u["past_target"], (2, 10)) assert_shape(u["past_dynamic_feat"], (4, 10)) assert_shape(u["past_observed_values"], (2, 10)) assert_shape(u["future_target"], (2, 2)) assert_padded_array( u["past_observed_values"], np.array([[1.0] * 9 + [0.0], [0.0] + [1.0] * 9]), u["past_is_pad"], ) assert_padded_array( u["past_target"], np.array([first_dim, second_dim]), u["past_is_pad"], ) else: for u in t(iter(ds), is_train=False): assert_shape(u["past_target"], (2, 10)) assert_shape(u["past_dynamic_feat"], (4, 10)) assert_shape(u["past_observed_values"], (2, 10)) assert_shape(u["future_target"], (2, 0)) assert_padded_array( u["past_observed_values"], np.array([[1.0] * 9 + [0.0], [0.0] + [1.0] * 9]), u["past_is_pad"], ) assert_padded_array( u["past_target"], np.array([first_dim, second_dim]), u["past_is_pad"], )