def test_2_old(): import time start = time.time() e_path = '/Users/m/data/events/RAM_FR1/R1060M_events.mat' from ptsa.data.readers import BaseEventReader base_e_reader = BaseEventReader(event_file=e_path, eliminate_events_with_no_eeg=True, use_ptsa_events_class=False) base_e_reader.read() base_events = base_e_reader.get_output() base_events = base_events[base_events.type == 'WORD'] # selecting only one session base_events = base_events[base_events.eegfile == base_events[0].eegfile] from ptsa.data.readers.TalReader import TalReader tal_path = '/Users/m/data/eeg/R1060M/tal/R1060M_talLocs_database_bipol.mat' tal_reader = TalReader(tal_filename=tal_path) monopolar_channels = tal_reader.get_monopolar_channels() bipolar_pairs = tal_reader.get_bipolar_pairs() print 'bipolar_pairs=', bipolar_pairs from ptsa.data.experimental.TimeSeriesEEGReader import TimeSeriesEEGReader time_series_reader = TimeSeriesEEGReader(events=base_events, start_time=0.0, end_time=1.6, buffer_time=1.0, keep_buffer=True) base_eegs = time_series_reader.read(channels=monopolar_channels) # base_eegs = base_eegs[:, 0:10, :] # bipolar_pairs = bipolar_pairs[0:10] wf = MorletWaveletFilter(time_series=base_eegs, freqs=np.logspace(np.log10(3), np.log10(180), 2), # freqs=np.array([3.]), output='power', # resamplerate=50.0 ) pow_wavelet, phase_wavelet = wf.filter() print 'total time = ', time.time() - start res_start = time.time() # from ptsa.data.filters.ResampleFilter import ResampleFilter # rsf = ResampleFilter (resamplerate=50.0) # rsf.set_input(pow_wavelet) # pow_wavelet = rsf.filter() print 'resample_time=', time.time() - res_start return pow_wavelet
def test_2(): import time start = time.time() e_path = '/Users/m/data/events/RAM_FR1/R1060M_events.mat' from ptsa.data.readers import BaseEventReader base_e_reader = BaseEventReader(event_file=e_path, eliminate_events_with_no_eeg=True, use_ptsa_events_class=False) base_e_reader.read() base_events = base_e_reader.get_output() base_events = base_events[base_events.type == 'WORD'] # selecting only one session base_events = base_events[base_events.eegfile == base_events[0].eegfile] from ptsa.data.readers.TalReader import TalReader tal_path = '/Users/m/data/eeg/R1060M/tal/R1060M_talLocs_database_bipol.mat' tal_reader = TalReader(tal_filename=tal_path) monopolar_channels = tal_reader.get_monopolar_channels() bipolar_pairs = tal_reader.get_bipolar_pairs() print 'bipolar_pairs=', bipolar_pairs from ptsa.data.experimental.TimeSeriesEEGReader import TimeSeriesEEGReader time_series_reader = TimeSeriesEEGReader(events=base_events, start_time=0.0, end_time=1.6, buffer_time=1.0, keep_buffer=True) base_eegs = time_series_reader.read(channels=monopolar_channels) # base_eegs = base_eegs[:, 0:10, :] # bipolar_pairs = bipolar_pairs[0:10] wf = MorletWaveletFilter( time_series=base_eegs, # bipolar_pairs=bipolar_pairs, freqs=np.logspace(np.log10(3), np.log10(180), 2), # freqs=np.array([3.]), output='power', # resamplerate=50.0 ) pow_wavelet, phase_wavelet = wf.filter() print 'total time = ', time.time() - start return pow_wavelet
def read_base_events(self): base_e_reader = BaseEventReader(event_file=self.e_path, eliminate_events_with_no_eeg=True, use_ptsa_events_class=False) base_e_reader.read() base_events = base_e_reader.get_output() base_events = base_events[base_events.type == 'WORD'] base_ev_order = np.argsort(base_events, order=('session', 'list', 'mstime')) base_events = base_events[base_ev_order] base_events = base_events[self.event_range] return base_events
def read_base_events(self): base_e_reader = BaseEventReader(event_file=self.e_path, eliminate_events_with_no_eeg=True, use_ptsa_events_class=False) base_e_reader.read() base_events = base_e_reader.get_output() base_events = base_events[base_events.type == 'WORD'] base_ev_order = np.argsort(base_events, order=('session','list','mstime')) base_events = base_events[base_ev_order] base_events = base_events[self.event_range] return base_events
def test_1_old(): import time start = time.time() e_path = '/Users/m/data/events/RAM_FR1/R1060M_events.mat' from ptsa.data.readers import BaseEventReader base_e_reader = BaseEventReader(event_file=e_path, eliminate_events_with_no_eeg=True, use_ptsa_events_class=False) base_e_reader.read() base_events = base_e_reader.get_output() base_events = base_events[base_events.type == 'WORD'] # selecting only one session base_events = base_events[base_events.eegfile == base_events[0].eegfile] from ptsa.data.readers.TalReader import TalReader tal_path = '/Users/m/data/eeg/R1060M/tal/R1060M_talLocs_database_bipol.mat' tal_reader = TalReader(tal_filename=tal_path) monopolar_channels = tal_reader.get_monopolar_channels() bipolar_pairs = tal_reader.get_bipolar_pairs() print('bipolar_pairs=', bipolar_pairs) from ptsa.data.experimental.TimeSeriesSessionEEGReader import TimeSeriesSessionEEGReader # time_series_reader = TimeSeriesSessionEEGReader(events=base_events, channels = ['002', '003', '004', '005']) time_series_reader = TimeSeriesSessionEEGReader( events=base_events, channels=monopolar_channels) ts_dict = time_series_reader.read() first_session_data = list(ts_dict.items())[0][1] print(first_session_data) wavelet_start = time.time() wf = MorletWaveletFilterSimple( time_series=first_session_data, freqs=np.logspace(np.log10(3), np.log10(180), 2), # freqs=np.array([3.]), output='power', # resamplerate=50.0 ) pow_wavelet, phase_wavelet = wf.filter() print('wavelet total time = ', time.time() - wavelet_start) # return pow_wavelet from ptsa.data.experimental.EventDataChopper import EventDataChopper edcw = EventDataChopper(events=base_events, event_duration=1.6, buffer=1.0, data_dict={base_events[0].eegfile: pow_wavelet}) chopped_wavelets = edcw.filter() chopped_wavelets = list(chopped_wavelets.items())[0][ 1] # getting first item of return dictionary print('total time = ', time.time() - start) # # from ptsa.data.filters.ResampleFilter import ResampleFilter # rsf = ResampleFilter (resamplerate=50.0) # rsf.set_input(chopped_wavelets) # chopped_wavelets_resampled = rsf.filter() # # return chopped_wavelets_resampled return chopped_wavelets
def test_1_old(): import time start = time.time() e_path = '/Users/m/data/events/RAM_FR1/R1060M_events.mat' from ptsa.data.readers import BaseEventReader base_e_reader = BaseEventReader(event_file=e_path, eliminate_events_with_no_eeg=True, use_ptsa_events_class=False) base_e_reader.read() base_events = base_e_reader.get_output() base_events = base_events[base_events.type == 'WORD'] # selecting only one session base_events = base_events[base_events.eegfile == base_events[0].eegfile] from ptsa.data.readers.TalReader import TalReader tal_path = '/Users/m/data/eeg/R1060M/tal/R1060M_talLocs_database_bipol.mat' tal_reader = TalReader(tal_filename=tal_path) monopolar_channels = tal_reader.get_monopolar_channels() bipolar_pairs = tal_reader.get_bipolar_pairs() print 'bipolar_pairs=', bipolar_pairs from ptsa.data.experimental.TimeSeriesSessionEEGReader import TimeSeriesSessionEEGReader # time_series_reader = TimeSeriesSessionEEGReader(events=base_events, channels = ['002', '003', '004', '005']) time_series_reader = TimeSeriesSessionEEGReader(events=base_events, channels=monopolar_channels) ts_dict = time_series_reader.read() first_session_data = ts_dict.items()[0][1] print first_session_data wavelet_start = time.time() wf = MorletWaveletFilter(time_series=first_session_data, freqs=np.logspace(np.log10(3), np.log10(180), 2), # freqs=np.array([3.]), output='power', # resamplerate=50.0 ) pow_wavelet, phase_wavelet = wf.filter() print 'wavelet total time = ', time.time() - wavelet_start # return pow_wavelet from ptsa.data.experimental.EventDataChopper import EventDataChopper edcw = EventDataChopper(events=base_events, event_duration=1.6, buffer=1.0, data_dict={base_events[0].eegfile: pow_wavelet}) chopped_wavelets = edcw.filter() chopped_wavelets = chopped_wavelets.items()[0][1] # getting first item of return dictionary print 'total time = ', time.time() - start # # from ptsa.data.filters.ResampleFilter import ResampleFilter # rsf = ResampleFilter (resamplerate=50.0) # rsf.set_input(chopped_wavelets) # chopped_wavelets_resampled = rsf.filter() # # return chopped_wavelets_resampled return chopped_wavelets
session_eegdata_dict[eegfile_name] = eegdata_xray return session_eegdata_dict if __name__ == "__main__": event_range = range(0, 30, 1) e_path = "/Users/m/data/events/RAM_FR1/R1060M_events.mat" from ptsa.data.readers import BaseEventReader base_e_reader = BaseEventReader(event_file=e_path, eliminate_events_with_no_eeg=True, use_ptsa_events_class=False) base_e_reader.read() base_events = base_e_reader.get_output() base_events = base_events[base_events.type == "WORD"] from ptsa.data.experimental.TimeSeriesSessionEEGReader import TimeSeriesSessionEEGReader time_series_reader = TimeSeriesSessionEEGReader(events=base_events, channels=["002", "003", "004", "005"]) # time_series_reader = TimeSeriesSessionEEGReader(events=base_events, event_data_only=True, channels=['002', '003', '004', '005']*20) ts = time_series_reader.read() print ts # # # # sys.exit() # print ts
return eventdata_xray if __name__ == '__main__': event_range = range(0, 30, 1) e_path = '/Users/m/data/events/RAM_FR1/R1060M_events.mat' from ptsa.data.readers import BaseEventReader base_e_reader = BaseEventReader(event_file=e_path, eliminate_events_with_no_eeg=True, use_ptsa_events_class=False) base_e_reader.read() base_events = base_e_reader.get_output() base_events = base_events[base_events.type == 'WORD'] # sorting names in the order in which they appear in the file eegfile_names = np.unique(base_events.eegfile) eeg_file_names_sorter = np.zeros(len(eegfile_names), dtype=np.int) for i, eegfile_name in enumerate(eegfile_names): eeg_file_names_sorter[i] = np.where( base_events.eegfile == eegfile_name)[0][0] eeg_file_names_sorter = np.argsort(eeg_file_names_sorter) eegfile_names = eegfile_names[eeg_file_names_sorter]
def run(self): # PTSA EVENT READER # e_path = join(self.pipeline.mount_point, 'data/events', self.pipeline.task,self.pipeline.subject+'_events.mat') e_path = '/Users/m/data/events/RAM_FR1/R1060M_events.mat' # e_path = '/Users/m/data/events/RAM_FR1/R1056M_events.mat' e_reader = PTSAEventReader(event_file=e_path, eliminate_events_with_no_eeg=True) e_reader.read() events = e_reader.get_output() events = events[events.type == 'WORD'] events = events[0:30] ev_order = np.argsort(events, order=('session','list','mstime')) events = events[ev_order] events = Events(events) # necessary workaround for new numpy print 'events=',events eegs= events.get_data(channels=['002','003'], start_time=0.0, end_time=1.6, buffer_time=1.0, eoffset='eegoffset', keep_buffer=False, eoffset_in_time=False,verbose=True) print eegs # BASE READER base_e_reader = BaseEventReader(event_file=e_path, eliminate_events_with_no_eeg=True, use_ptsa_events_class=False) base_e_reader.read() base_events = base_e_reader.get_output() base_events = base_events[base_events.type == 'WORD'] base_ev_order = np.argsort(base_events, order=('session','list','mstime')) base_events = base_events[base_ev_order] base_events = base_events[0:30] print 'base_events=',base_events from ptsa.data.readers.TimeSeriesEEGReader import TimeSeriesEEGReader time_series_reader = TimeSeriesEEGReader(base_events) time_series_reader.start_time = 0.0 time_series_reader.end_time = 1.6 time_series_reader.buffer_time = 1.0 time_series_reader.keep_buffer = False time_series_reader.read(channels=['002','003']) base_eegs = time_series_reader.get_output() print
def run(self): # PTSA EVENT READER # e_path = join(self.pipeline.mount_point, 'data/events', self.pipeline.task,self.pipeline.subject+'_events.mat') e_path = '/Users/m/data/events/RAM_FR1/R1060M_events.mat' # e_path = '/Users/m/data/events/RAM_FR1/R1056M_events.mat' e_reader = PTSAEventReader(event_file=e_path, eliminate_events_with_no_eeg=True) e_reader.read() events = e_reader.get_output() events = events[events.type == 'WORD'] events = events[0:30] ev_order = np.argsort(events, order=('session', 'list', 'mstime')) events = events[ev_order] events = Events(events) # necessary workaround for new numpy print 'events=', events eegs = events.get_data(channels=['002', '003'], start_time=0.0, end_time=1.6, buffer_time=1.0, eoffset='eegoffset', keep_buffer=False, eoffset_in_time=False, verbose=True) print eegs # BASE READER base_e_reader = BaseEventReader(event_file=e_path, eliminate_events_with_no_eeg=True, use_ptsa_events_class=False) base_e_reader.read() base_events = base_e_reader.get_output() base_events = base_events[base_events.type == 'WORD'] base_ev_order = np.argsort(base_events, order=('session', 'list', 'mstime')) base_events = base_events[base_ev_order] base_events = base_events[0:30] print 'base_events=', base_events from ptsa.data.readers.TimeSeriesEEGReader import TimeSeriesEEGReader time_series_reader = TimeSeriesEEGReader(base_events) time_series_reader.start_time = 0.0 time_series_reader.end_time = 1.6 time_series_reader.buffer_time = 1.0 time_series_reader.keep_buffer = False time_series_reader.read(channels=['002', '003']) base_eegs = time_series_reader.get_output() print