def generate_c(bits, randfunc, progress_func = None): # Generate the prime factors of n if progress_func: progress_func('p,q\n') p = q = 1L while number.size(p*q) < bits: p = pubkey.getPrime(bits/2, randfunc) q = pubkey.getPrime(bits/2, randfunc) # p shall be smaller than q (for calc of u) if p > q: (p, q)=(q, p) if progress_func: progress_func('u\n') u=pubkey.inverse(p, q) n=p*q e = 65537L if progress_func: progress_func('d\n') d=pubkey.inverse(e, (p-1)*(q-1)) key = _fastmath.rsa_construct(n,e,d,p,q,u) obj = RSAobj_c(key) ## print p ## print q ## print number.size(p), number.size(q), number.size(q*p), ## print obj.size(), bits assert bits <= 1+obj.size(), "Generated key is too small" return obj
def generate(bits, randfunc, progress_func=None): """generate(bits:int, randfunc:callable, progress_func:callable) Generate an RSA key of length 'bits', using 'randfunc' to get random data and 'progress_func', if present, to display the progress of the key generation. """ obj=RSAobj() # Generate the prime factors of n if progress_func: progress_func('p,q\n') p = q = 1L while number.size(p*q) < bits: p = pubkey.getPrime(bits/2, randfunc) q = pubkey.getPrime(bits/2, randfunc) # p shall be smaller than q (for calc of u) if p > q: (p, q)=(q, p) obj.p = p obj.q = q if progress_func: progress_func('u\n') obj.u = pubkey.inverse(obj.p, obj.q) obj.n = obj.p*obj.q obj.e = 65537L if progress_func: progress_func('d\n') obj.d=pubkey.inverse(obj.e, (obj.p-1)*(obj.q-1)) assert bits <= 1+obj.size(), "Generated key is too small" return obj