def monthlyreturns(self,
                       list_of_symbols,
                       startdate_string='2005-01-01',
                       showresults=0):

        #'^GSmr   ^OEX    ^VIX    ^OEX    ^MID   ^RUT   ^DJI

        import pullreturns as pr
        dict_of_dfs = {}

        mysymbolslist = list_of_symbols  #['^GSPC','^DJI','^MID','^OEX','AAPL','LEO']

        for symbol in mysymbolslist:
            df = pr.monthlyreturnsusingyahoosymbol(symbol, startdate_string)
            dict_of_dfs[symbol] = df

        #df = pr.monthlyreturnsusingyahoosymbol('^GSPC','2005-01-01')
        #dict_of_dfs['^GSPC'] = df
        #
        #df = pr.monthlyreturnsusingyahoosymbol('^DJI','2005-01-01')
        #dict_of_dfs['^DJI'] = df
        #
        #df = pr.monthlyreturnsusingyahoosymbol('^MID','2005-01-01')
        #dict_of_dfs['^MID'] = df
        #
        #df = pr.monthlyreturnsusingyahoosymbol('^VIX','2005-01-01')
        #dict_of_dfs['^VIX'] = df

        passed = 0
        for k, v in dict_of_dfs.items():
            if passed == 0:
                df_align = v[['b_monthend', 'e_pctchange']]
                df_align = df_align.set_index('b_monthend')
                df_align.columns = [k]
                #sLength = len(df_align[k])
                #originalid = k

            else:
                df_new = v[['b_monthend', 'e_pctchange']]
                df_new = df_new.set_index('b_monthend')
                df_new.columns = [k]
                df_new.sort_index
                #print df_new
                #df_align[k] = df_new.loc[k].shape[0]
                #print df_new
                #df_align[k] = pd.Series(df_new, index=df_align.index)
                #df_align[k] = df_align[originalid].map(lambda x: df_new[k])
                df_align[k] = df_new[k]
            passed = 1
        if showresults == 1:
            print '----------------------------------------------------'
            print '                 monthly returns'
            print '----------------------------------------------------'
            print df_align
        #self.DataFrameMonthlyReturns = df_align
        return df_align
#x = np.array([[0, 2], [1, 1], [2, 0]]).T
#print np.cov(x)

#import pandas as pd

#'^GSmr   ^OEX    ^VIX    ^OEX    ^MID   ^RUT   ^DJI

import numpy as np
import pandas as pd
import pullreturns as pr
dict_of_dfs = {}

mysymbolslist = ['^GSPC', '^DJI', '^MID', '^OEX', 'AAPL', 'LEO']

for symbol in mysymbolslist:
    df = pr.monthlyreturnsusingyahoosymbol(symbol, '2005-01-01')
    dict_of_dfs[symbol] = df

#df = pr.monthlyreturnsusingyahoosymbol('^GSPC','2005-01-01')
#dict_of_dfs['^GSPC'] = df
#
#df = pr.monthlyreturnsusingyahoosymbol('^DJI','2005-01-01')
#dict_of_dfs['^DJI'] = df
#
#df = pr.monthlyreturnsusingyahoosymbol('^MID','2005-01-01')
#dict_of_dfs['^MID'] = df
#
#df = pr.monthlyreturnsusingyahoosymbol('^VIX','2005-01-01')
#dict_of_dfs['^VIX'] = df

passed = 0
예제 #3
0
#       [5, 500, 0],
#       [1, 100, 7]])
#
#print np.cov(x)
import pandas as pd
import numpy as np
x = np.array([[0, 2], [1, 1], [2, 0]]).T
print np.cov(x)

#import pandas as pd

#'^GSmr   ^OEX    ^VIX    ^OEX    ^MID   ^RUT   ^DJI
import pullreturns as pr
dict_of_dfs = {}

df = pr.monthlyreturnsusingyahoosymbol('^GSPC', '2005-01-01')
dict_of_dfs['^GSPC'] = df

df = pr.monthlyreturnsusingyahoosymbol('^DJI', '2005-01-01')
dict_of_dfs['^DJI'] = df

df = pr.monthlyreturnsusingyahoosymbol('^MID', '2005-01-01')
dict_of_dfs['^MID'] = df

df = pr.monthlyreturnsusingyahoosymbol('^VIX', '2005-01-01')
dict_of_dfs['^VIX'] = df

passed = 0
for k, v in dict_of_dfs.items():
    if passed == 0:
        df_align = v[['b_monthend', 'e_pctchange']]
    def monthlyreturns(self,
                       list_of_symbols,
                       startdate_string='2005-01-01',
                       showresults=0):

        #'^GSmr   ^OEX    ^VIX    ^OEX    ^MID   ^RUT   ^DJI

        import pullreturns as pr
        dict_of_dfs = {}

        mysymbolslist = list_of_symbols  #['^GSPC','^DJI','^MID','^OEX','AAPL','LEO']

        for symbol in mysymbolslist:
            df = pr.monthlyreturnsusingyahoosymbol(symbol, startdate_string)
            dict_of_dfs[symbol] = df

        #df = pr.monthlyreturnsusingyahoosymbol('^GSPC','2005-01-01')
        #dict_of_dfs['^GSPC'] = df
        #
        #df = pr.monthlyreturnsusingyahoosymbol('^DJI','2005-01-01')
        #dict_of_dfs['^DJI'] = df
        #
        #df = pr.monthlyreturnsusingyahoosymbol('^MID','2005-01-01')
        #dict_of_dfs['^MID'] = df
        #
        #df = pr.monthlyreturnsusingyahoosymbol('^VIX','2005-01-01')
        #dict_of_dfs['^VIX'] = df

        #passed = 0
        #import datetime
        import pandas as pd
        #import numpy as np

        #todays_date = datetime.datetime.now().date()
        #index = pd.date_range(todays_date-datetime.timedelta(10), periods=10, freq='D')
        index = ['X']
        columns = ['A', 'B', 'C']
        df_largest = pd.DataFrame(index=index, columns=columns)
        df_largest = df_largest.fillna(0)  # with 0s rather than NaNs
        #print df_largest
        #while len(dict_of_dfs_bysize) < len(dict_of_dfs):
        keyoflargestdf = ''
        for k, v in dict_of_dfs.items():
            if len(v) > len(df_largest):
                df_largest = v
                keyoflargestdf = k
                #break

        df_align = df_largest[['b_monthend', 'e_pctchange']]
        df_align = df_align.set_index('b_monthend')
        df_align.columns = [keyoflargestdf]
        df_align.sort_index
        #print df_align
        #print df_largest

        #            if passed == 0:
        #                df_align = v[['b_monthend','e_pctchange']]
        #                df_align = df_align.set_index('b_monthend')
        #                df_align.columns = [k]
        #                df_align.sort_index
        #                #sLength = len(df_align[k])
        #                #originalid = k
        #
        #            else:

        for k, v in dict_of_dfs.items():
            if not k == keyoflargestdf:
                df_new = v[['b_monthend', 'e_pctchange']]
                df_new = df_new.set_index('b_monthend')
                df_new.columns = [k]
                df_new.sort_index
                #print df_new
                #df_align[k] = df_new.loc[k].shape[0]
                #print df_new
                #df_align[k] = pd.Series(df_new, index=df_align.index)
                #df_align[k] = df_align[originalid].map(lambda x: df_new[k])
                df_align[k] = df_new[k]
        if showresults == 1:
            print '----------------------------------------------------'
            print '                 monthly returns'
            print '----------------------------------------------------'
            print df_align
        #self.DataFrameMonthlyReturns = df_align
        return df_align