예제 #1
0
def test_run_timeseries_engine(fn_report_example, params_serial,
                               df_inputs_clearsky_8760):

    df_inputs = df_inputs_clearsky_8760.iloc[:24, :]
    n = df_inputs.shape[0]

    # Get MET data
    timestamps = df_inputs.index
    dni = df_inputs.dni.values
    dhi = df_inputs.dhi.values
    solar_zenith = df_inputs.solar_zenith.values
    solar_azimuth = df_inputs.solar_azimuth.values
    surface_tilt = df_inputs.surface_tilt.values
    surface_azimuth = df_inputs.surface_azimuth.values

    report = run_timeseries_engine(fn_report_example, params_serial,
                                   timestamps, dni, dhi, solar_zenith,
                                   solar_azimuth, surface_tilt,
                                   surface_azimuth,
                                   params_serial['rho_ground'])

    assert len(report['qinc_front']) == n
    # Test value consistency
    np.testing.assert_almost_equal(np.nansum(report['qinc_back']),
                                   541.7115807694377)
    np.testing.assert_almost_equal(np.nansum(report['iso_back']),
                                   18.050083142438311)
    # Check a couple values
    np.testing.assert_almost_equal(report['qinc_back'][7], 11.160301350847325)
    np.testing.assert_almost_equal(report['qinc_back'][-8], 8.642850754173368)
예제 #2
0
def test_params_irradiance_model():
    """Test that irradiance params are passed correctly in
    run_timeseries_engine"""
    mock_irradiance_model = mock.MagicMock()
    mock_engine = mock.MagicMock()
    mock_pvarray = mock.MagicMock()
    irradiance_params = {'horizon_band_angle': 15.}

    _ = run_timeseries_engine(None,
                              None,
                              None,
                              None,
                              None,
                              None,
                              None,
                              None,
                              None,
                              None,
                              cls_engine=mock_engine,
                              cls_pvarray=mock_pvarray,
                              cls_irradiance=mock_irradiance_model,
                              irradiance_model_params=irradiance_params)

    mock_irradiance_model.assert_called_once_with(
        horizon_band_angle=irradiance_params['horizon_band_angle'])
예제 #3
0
def test_params_ghi_passed():
    """Test that GHI is passed correctly to run functions"""
    mock_irradiance_model = mock.MagicMock()
    mock_engine = mock.MagicMock()
    mock_pvarray = mock.MagicMock()
    ghi = [1000.]

    _ = run_timeseries_engine(None,
                              None,
                              None,
                              None,
                              None,
                              None,
                              None,
                              None,
                              None,
                              None,
                              cls_engine=mock_engine,
                              cls_pvarray=mock_pvarray,
                              cls_irradiance=mock_irradiance_model,
                              ghi=ghi)

    mock_engine.return_value.fit.assert_called_with(None,
                                                    None,
                                                    None,
                                                    None,
                                                    None,
                                                    None,
                                                    None,
                                                    None,
                                                    ghi=ghi)
예제 #4
0
def test_run_timeseries_engine_fast_mode(fn_report_example, params_serial,
                                         df_inputs_clearsky_8760):
    """Test that running timeseries engine with fast mode works consistently.
    Values are supposed to be a little higher than with full mode"""
    df_inputs = df_inputs_clearsky_8760.iloc[:24, :]
    n = df_inputs.shape[0]

    # Get MET data
    timestamps = df_inputs.index
    dni = df_inputs.dni.values
    dhi = df_inputs.dhi.values
    solar_zenith = df_inputs.solar_zenith.values
    solar_azimuth = df_inputs.solar_azimuth.values
    surface_tilt = df_inputs.surface_tilt.values
    surface_azimuth = df_inputs.surface_azimuth.values
    fast_mode_pvrow_index = 1

    def fn_report(pvarray):
        return {
            'qinc_back': pvarray.ts_pvrows[1].back.get_param_weighted('qinc'),
            'iso_back':
            pvarray.ts_pvrows[1].back.get_param_weighted('isotropic')
        }

    report = run_timeseries_engine(fn_report,
                                   params_serial,
                                   timestamps,
                                   dni,
                                   dhi,
                                   solar_zenith,
                                   solar_azimuth,
                                   surface_tilt,
                                   surface_azimuth,
                                   params_serial['rho_ground'],
                                   fast_mode_pvrow_index=fast_mode_pvrow_index)

    assert len(report['qinc_back']) == n
    # Test value consistency
    np.testing.assert_almost_equal(np.nansum(report['qinc_back']),
                                   548.0011865481954)
    np.testing.assert_almost_equal(np.nansum(report['iso_back']),
                                   18.03732189070727)
    # Check a couple values
    np.testing.assert_almost_equal(report['qinc_back'][7], 11.304105184587364)
    np.testing.assert_almost_equal(report['qinc_back'][-8], 8.743201975668212)
예제 #5
0
def pvfactors_timeseries(solar_azimuth,
                         solar_zenith,
                         surface_azimuth,
                         surface_tilt,
                         axis_azimuth,
                         timestamps,
                         dni,
                         dhi,
                         gcr,
                         pvrow_height,
                         pvrow_width,
                         albedo,
                         n_pvrows=3,
                         index_observed_pvrow=1,
                         rho_front_pvrow=0.03,
                         rho_back_pvrow=0.05,
                         horizon_band_angle=15.):
    """
    Calculate front and back surface plane-of-array irradiance on
    a fixed tilt or single-axis tracker PV array configuration, and using
    the open-source "pvfactors" package.  pvfactors implements the model
    described in [1]_.
    Please refer to pvfactors online documentation for more details:
    https://sunpower.github.io/pvfactors/
    Parameters
    ----------
    solar_azimuth: numeric
        Sun's azimuth angles using pvlib's azimuth convention (deg)
    solar_zenith: numeric
        Sun's zenith angles (deg)
    surface_azimuth: numeric
        Azimuth angle of the front surface of the PV modules, using pvlib's
        convention (deg)
    surface_tilt: numeric
        Tilt angle of the PV modules, going from 0 to 180 (deg)
    axis_azimuth: float
        Azimuth angle of the rotation axis of the PV modules, using pvlib's
        convention (deg). This is supposed to be fixed for all timestamps.
    timestamps: datetime or DatetimeIndex
        List of simulation timestamps
    dni: numeric
        Direct normal irradiance (W/m2)
    dhi: numeric
        Diffuse horizontal irradiance (W/m2)
    gcr: float
        Ground coverage ratio of the pv array
    pvrow_height: float
        Height of the pv rows, measured at their center (m)
    pvrow_width: float
        Width of the pv rows in the considered 2D plane (m)
    albedo: float
        Ground albedo
    n_pvrows: int, default 3
        Number of PV rows to consider in the PV array
    index_observed_pvrow: int, default 1
        Index of the PV row whose incident irradiance will be returned. Indices
        of PV rows go from 0 to n_pvrows-1.
    rho_front_pvrow: float, default 0.03
        Front surface reflectivity of PV rows
    rho_back_pvrow: float, default 0.05
        Back surface reflectivity of PV rows
    horizon_band_angle: float, default 15
        Elevation angle of the sky dome's diffuse horizon band (deg)
    Returns
    -------
    poa_front: numeric
        Calculated incident irradiance on the front surface of the PV modules
        (W/m2)
    poa_back: numeric
        Calculated incident irradiance on the back surface of the PV modules
        (W/m2)
    poa_front_absorbed: numeric
        Calculated absorbed irradiance on the front surface of the PV modules
        (W/m2), after AOI losses
    poa_back_absorbed: numeric
        Calculated absorbed irradiance on the back surface of the PV modules
        (W/m2), after AOI losses
    References
    ----------
    .. [1] Anoma, Marc Abou, et al. "View Factor Model and Validation for
        Bifacial PV and Diffuse Shade on Single-Axis Trackers." 44th IEEE
        Photovoltaic Specialist Conference. 2017.
    """
    # Convert pandas Series inputs (and some lists) to numpy arrays
    if isinstance(solar_azimuth, pd.Series):
        solar_azimuth = solar_azimuth.values
    elif isinstance(solar_azimuth, list):
        solar_azimuth = np.array(solar_azimuth)
    if isinstance(solar_zenith, pd.Series):
        solar_zenith = solar_zenith.values
    elif isinstance(solar_zenith, list):
        solar_zenith = np.array(solar_zenith)
    if isinstance(surface_azimuth, pd.Series):
        surface_azimuth = surface_azimuth.values
    elif isinstance(surface_azimuth, list):
        surface_azimuth = np.array(surface_azimuth)
    if isinstance(surface_tilt, pd.Series):
        surface_tilt = surface_tilt.values
    elif isinstance(surface_tilt, list):
        surface_tilt = np.array(surface_tilt)
    if isinstance(dni, pd.Series):
        dni = dni.values
    elif isinstance(dni, list):
        dni = np.array(dni)
    if isinstance(dhi, pd.Series):
        dhi = dhi.values
    elif isinstance(dhi, list):
        dhi = np.array(dhi)

    # Import pvfactors functions for timeseries calculations.
    from pvfactors.run import run_timeseries_engine

    # Build up pv array configuration parameters
    pvarray_parameters = {
        'n_pvrows': n_pvrows,
        'axis_azimuth': axis_azimuth,
        'pvrow_height': pvrow_height,
        'pvrow_width': pvrow_width,
        'gcr': gcr
    }

    irradiance_model_params = {
        'rho_front': rho_front_pvrow,
        'rho_back': rho_back_pvrow,
        'horizon_band_angle': horizon_band_angle
    }

    # Create report function
    def fn_build_report(pvarray):
        return {
            'total_inc_back':
            pvarray.ts_pvrows[index_observed_pvrow].back.get_param_weighted(
                'qinc'),
            'total_inc_front':
            pvarray.ts_pvrows[index_observed_pvrow].front.get_param_weighted(
                'qinc'),
            'total_abs_back':
            pvarray.ts_pvrows[index_observed_pvrow].back.get_param_weighted(
                'qabs'),
            'total_abs_front':
            pvarray.ts_pvrows[index_observed_pvrow].front.get_param_weighted(
                'qabs')
        }

    # Run pvfactors calculations
    report = run_timeseries_engine(
        fn_build_report,
        pvarray_parameters,
        timestamps,
        dni,
        dhi,
        solar_zenith,
        solar_azimuth,
        surface_tilt,
        surface_azimuth,
        albedo,
        irradiance_model_params=irradiance_model_params)

    # Turn report into dataframe
    df_report = pd.DataFrame(report, index=timestamps)

    return (df_report.total_inc_front, df_report.total_inc_back,
            df_report.total_abs_front, df_report.total_abs_back)
예제 #6
0
def get_effective_irradiance(self, weather, utc_offset):
    '''
  Transform GHI/DNI/DHI from weather dataframe into POA.
  This is a custom method added to the modelchain class.
  Modelchain instance must already be assigned bifacial_losses attribute.
  
  Parameters:
  self: pvlib.modelchain
    a ModelChain instance
  weather: pandas.DataFrame
    time series weather data with columns ['ghi', 'dni', 'dhi', 'temp_air',
    'wind_speed', 'surface_albedo']
  utc_offset: int.
    hour offset of local timezone (in weather DataFrame) from UTC
  
  Returns:
  pvlib.modelchain
  
  '''

    # Prepare weather DataFrame ----

    # Must be datetimeindex aware
    tz = 'Etc/GMT+' + str(-utc_offset)

    # If pd.datetimeindex is naive, localize, otherwise convert
    if (pd.to_datetime(weather.index).tz is None):
        weather.index = pd.to_datetime(weather.index).tz_localize(tz)
    else:
        weather.index = pd.to_datetime(weather.index).tz_convert(tz)

    # Check if I should override weather's albedo values
    # (only canopy or rooftop systems will have self.system.albedo values)
    try:
        weather.albedo = self.system.albedo
    except:
        pass

    # Run PVLib models ----

    self.prepare_inputs(weather)
    self.aoi_model()
    self.spectral_model()
    self.effective_irradiance_model()
    self.effective_irradiance = self.effective_irradiance.fillna(0)
    self.temperature_model()

    # Use PVFactors viewshed model ----

    # Surface Inputs calculated in prepare_inputs if tracking,
    if isinstance(self.system, SingleAxisTracker):
        surface_tilt = self.tracking.surface_tilt
        surface_azimuth = self.tracking.surface_azimuth

    # but must be manually calculated if fixed-tilt
    else:
        surface_tilt = np.repeat(self.system.surface_tilt,
                                 len(self.weather.index))
        surface_azimuth = np.repeat(self.system.surface_azimuth,
                                    len(self.weather.index))

    # Need a custom function to build the report of the PVFactors simulation

    def pvfactor_build_report(pvarray):
        return {
            'total_inc_back':
            pvarray.ts_pvrows[1].back.get_param_weighted('qinc').tolist(),
            'total_inc_front':
            pvarray.ts_pvrows[1].front.get_param_weighted('qinc').tolist()
        }

    pvarray_parameters = {
        'n_pvrows': 3,
        'axis_azimuth': self.system.axis_azimuth,
        'pvrow_height': self.system.axis_height,
        'pvrow_width': self.system.collector_width,
        'gcr': self.system.gcr,
        # front and back reflectivity
        'rho_front_pvrow': 0.01,
        'rho_back_pvrow': .03,
        # sky dome's diffuse horizon band angle
        'horizon_band_angle': 15
    }

    pvfactor_report = run_timeseries_engine(
        pvfactor_build_report, pvarray_parameters, weather.index, weather.dni,
        weather.dhi, self.solar_position.zenith, self.solar_position.azimuth,
        surface_tilt, surface_azimuth, weather.surface_albedo)

    # Save the PVFactor results
    pvfactor_df = pd.DataFrame(pvfactor_report, index=weather.index)

    setattr(self, 'back_irradiance', pvfactor_df.total_inc_back.fillna(0))
    setattr(self, 'front_irradiance', pvfactor_df.total_inc_front.fillna(0))

    # Calculate plane of array irradiance losses ----

    # PVFactors doesn't account for backtracking, use frontside irradiance from
    # PVLib instead.  (self.effective_irradiance for backtracking systems instead
    # of self.front_irradiance)
    # Effective Irradiance = Frontside POA + Backside POA *
    #                        (Bifaciality Reduced For Backside Losses)

    if self.system.backtrack:
        setattr(
            self, 'effective_irradiance_bifacial',
            self.effective_irradiance + self.back_irradiance *
            (self.system.module_parameters['bifaciality'] *
             (1 - self.bifacial_losses)))
    else:
        setattr(
            self, 'effective_irradiance_bifacial',
            self.front_irradiance + self.back_irradiance *
            (self.system.module_parameters['bifaciality'] *
             (1 - self.bifacial_losses)))

    # Apply same soiling loss to front-and-backside POA (conservative approach)
    setattr(self, 'soiling', weather.soiling)
    setattr(self, 'effective_irradiance_soiled',
            self.effective_irradiance_bifacial * (1 - self.soiling))

    return self
예제 #7
0
def pvfactors_timeseries(solar_azimuth,
                         solar_zenith,
                         surface_azimuth,
                         surface_tilt,
                         axis_azimuth,
                         timestamps,
                         dni,
                         dhi,
                         gcr,
                         pvrow_height,
                         pvrow_width,
                         albedo,
                         n_pvrows=3,
                         index_observed_pvrow=1,
                         rho_front_pvrow=0.03,
                         rho_back_pvrow=0.05,
                         horizon_band_angle=15.,
                         run_parallel_calculations=True,
                         n_workers_for_parallel_calcs=2):
    """
    Calculate front and back surface plane-of-array irradiance on
    a fixed tilt or single-axis tracker PV array configuration, and using
    the open-source "pvfactors" package.  pvfactors implements the model
    described in [1]_.
    Please refer to pvfactors online documentation for more details:
    https://sunpower.github.io/pvfactors/

    Parameters
    ----------
    solar_azimuth: numeric
        Sun's azimuth angles using pvlib's azimuth convention (deg)
    solar_zenith: numeric
        Sun's zenith angles (deg)
    surface_azimuth: numeric
        Azimuth angle of the front surface of the PV modules, using pvlib's
        convention (deg)
    surface_tilt: numeric
        Tilt angle of the PV modules, going from 0 to 180 (deg)
    axis_azimuth: float
        Azimuth angle of the rotation axis of the PV modules, using pvlib's
        convention (deg). This is supposed to be fixed for all timestamps.
    timestamps: datetime or DatetimeIndex
        List of simulation timestamps
    dni: numeric
        Direct normal irradiance (W/m2)
    dhi: numeric
        Diffuse horizontal irradiance (W/m2)
    gcr: float
        Ground coverage ratio of the pv array
    pvrow_height: float
        Height of the pv rows, measured at their center (m)
    pvrow_width: float
        Width of the pv rows in the considered 2D plane (m)
    albedo: float
        Ground albedo
    n_pvrows: int, default 3
        Number of PV rows to consider in the PV array
    index_observed_pvrow: int, default 1
        Index of the PV row whose incident irradiance will be returned. Indices
        of PV rows go from 0 to n_pvrows-1.
    rho_front_pvrow: float, default 0.03
        Front surface reflectivity of PV rows
    rho_back_pvrow: float, default 0.05
        Back surface reflectivity of PV rows
    horizon_band_angle: float, default 15
        Elevation angle of the sky dome's diffuse horizon band (deg)
    run_parallel_calculations: bool, default True
        pvfactors is capable of using multiprocessing. Use this flag to decide
        to run calculations in parallel (recommended) or not.
    n_workers_for_parallel_calcs: int, default 2
        Number of workers to use in the case of parallel calculations. The
        '-1' value will lead to using a value equal to the number
        of CPU's on the machine running the model.

    Returns
    -------
    front_poa_irradiance: numeric
        Calculated incident irradiance on the front surface of the PV modules
        (W/m2)
    back_poa_irradiance: numeric
        Calculated incident irradiance on the back surface of the PV modules
        (W/m2)
    df_registries: pandas DataFrame
        DataFrame containing detailed outputs of the simulation; for
        instance the shapely geometries, the irradiance components incident on
        all surfaces of the PV array (for all timestamps), etc.
        In the pvfactors documentation, this is refered to as the "surface
        registry".

    References
    ----------
    .. [1] Anoma, Marc Abou, et al. "View Factor Model and Validation for
        Bifacial PV and Diffuse Shade on Single-Axis Trackers." 44th IEEE
        Photovoltaic Specialist Conference. 2017.
    """

    # Convert pandas Series inputs (and some lists) to numpy arrays
    if isinstance(solar_azimuth, pd.Series):
        solar_azimuth = solar_azimuth.values
    elif isinstance(solar_azimuth, list):
        solar_azimuth = np.array(solar_azimuth)
    if isinstance(solar_zenith, pd.Series):
        solar_zenith = solar_zenith.values
    if isinstance(surface_azimuth, pd.Series):
        surface_azimuth = surface_azimuth.values
    elif isinstance(surface_azimuth, list):
        surface_azimuth = np.array(surface_azimuth)
    if isinstance(surface_tilt, pd.Series):
        surface_tilt = surface_tilt.values
    if isinstance(dni, pd.Series):
        dni = dni.values
    if isinstance(dhi, pd.Series):
        dhi = dhi.values
    if isinstance(solar_azimuth, list):
        solar_azimuth = np.array(solar_azimuth)

    # Import pvfactors functions for timeseries calculations.
    from pvfactors.run import (run_timeseries_engine, run_parallel_engine)

    # Build up pv array configuration parameters
    pvarray_parameters = {
        'n_pvrows': n_pvrows,
        'axis_azimuth': axis_azimuth,
        'pvrow_height': pvrow_height,
        'pvrow_width': pvrow_width,
        'gcr': gcr,
        'rho_front_pvrow': rho_front_pvrow,
        'rho_back_pvrow': rho_back_pvrow,
        'horizon_band_angle': horizon_band_angle
    }

    # Run pvfactors calculations: either in parallel or serially
    if run_parallel_calculations:
        report = run_parallel_engine(PVFactorsReportBuilder,
                                     pvarray_parameters,
                                     timestamps,
                                     dni,
                                     dhi,
                                     solar_zenith,
                                     solar_azimuth,
                                     surface_tilt,
                                     surface_azimuth,
                                     albedo,
                                     n_processes=n_workers_for_parallel_calcs)
    else:
        report = run_timeseries_engine(PVFactorsReportBuilder.build,
                                       pvarray_parameters, timestamps, dni,
                                       dhi, solar_zenith, solar_azimuth,
                                       surface_tilt, surface_azimuth, albedo)

    # Turn report into dataframe
    df_report = pd.DataFrame(report, index=timestamps)

    return df_report.total_inc_front, df_report.total_inc_back
예제 #8
0
def test_run_timeseries_faoi_fn(params_serial, pvmodule_canadian,
                                df_inputs_clearsky_8760):
    """Test that in run_timeseries function, faoi functions are used
    correctly"""
    # Prepare timeseries inputs
    df_inputs = df_inputs_clearsky_8760.iloc[:24, :]
    timestamps = df_inputs.index
    dni = df_inputs.dni.values
    dhi = df_inputs.dhi.values
    solar_zenith = df_inputs.solar_zenith.values
    solar_azimuth = df_inputs.solar_azimuth.values
    surface_tilt = df_inputs.surface_tilt.values
    surface_azimuth = df_inputs.surface_azimuth.values

    expected_qinc_back = 542.018551
    expected_qinc_front = 5452.858863

    # --- Test without passing vf parameters
    # report function with test in it
    def report_fn_with_tests_no_faoi(pvarray):
        vf_aoi_matrix = pvarray.ts_vf_aoi_matrix
        pvrow = pvarray.ts_pvrows[0]
        list_back_pvrow_idx = [
            ts_surf.index for ts_surf in pvarray.ts_pvrows[0].all_ts_surfaces
        ]
        # Check that sum of vf_aoi is equal to reflectivity values
        # since no faoi_fn used
        np.testing.assert_allclose(
            vf_aoi_matrix[list_back_pvrow_idx, :, 12].sum(axis=1),
            [0.99, 0., 0.97, 0.])

        return {
            'qinc_front': pvrow.front.get_param_weighted('qinc'),
            'qabs_front': pvrow.front.get_param_weighted('qabs'),
            'qinc_back': pvrow.back.get_param_weighted('qinc'),
            'qabs_back': pvrow.back.get_param_weighted('qabs')
        }

    # create calculator
    report = run_timeseries_engine(report_fn_with_tests_no_faoi,
                                   params_serial,
                                   timestamps,
                                   dni,
                                   dhi,
                                   solar_zenith,
                                   solar_azimuth,
                                   surface_tilt,
                                   surface_azimuth,
                                   params_serial['rho_ground'],
                                   vf_calculator_params=None,
                                   irradiance_model_params=None)

    np.testing.assert_allclose(np.nansum(report['qinc_back']),
                               expected_qinc_back)
    np.testing.assert_allclose(np.nansum(report['qabs_back']), 525.757995)
    np.testing.assert_allclose(np.nansum(report['qinc_front']),
                               expected_qinc_front)
    np.testing.assert_allclose(np.nansum(report['qabs_front']), 5398.330275)

    # --- Test when passing vf parameters
    # Prepare vf calc params
    faoi_fn = faoi_fn_from_pvlib_sandia(pvmodule_canadian)
    # the following is a very high number to get agreement in
    # integral sums between back and front surfaces
    n_sections = 10000
    vf_calc_params = {
        'faoi_fn_front': faoi_fn,
        'faoi_fn_back': faoi_fn,
        'n_aoi_integral_sections': n_sections
    }
    irr_params = {'faoi_fn_front': faoi_fn, 'faoi_fn_back': faoi_fn}

    def report_fn_with_tests_w_faoi(pvarray):
        vf_aoi_matrix = pvarray.ts_vf_aoi_matrix
        pvrow = pvarray.ts_pvrows[0]

        list_back_pvrow_idx = [
            ts_surf.index for ts_surf in pvrow.all_ts_surfaces
        ]
        # Check that sum of vf_aoi is consistent
        np.testing.assert_allclose(vf_aoi_matrix[list_back_pvrow_idx, :,
                                                 12].sum(axis=1),
                                   [0.97102, 0., 0.971548, 0.],
                                   atol=0,
                                   rtol=1e-6)

        return {
            'qinc_front': pvrow.front.get_param_weighted('qinc'),
            'qabs_front': pvrow.front.get_param_weighted('qabs'),
            'qinc_back': pvrow.back.get_param_weighted('qinc'),
            'qabs_back': pvrow.back.get_param_weighted('qabs')
        }

    # create calculator
    report = run_timeseries_engine(report_fn_with_tests_w_faoi,
                                   params_serial,
                                   timestamps,
                                   dni,
                                   dhi,
                                   solar_zenith,
                                   solar_azimuth,
                                   surface_tilt,
                                   surface_azimuth,
                                   params_serial['rho_ground'],
                                   vf_calculator_params=vf_calc_params,
                                   irradiance_model_params=irr_params)

    np.testing.assert_allclose(np.nansum(report['qinc_back']),
                               expected_qinc_back)
    np.testing.assert_allclose(np.nansum(report['qabs_back']), 520.892016)
    np.testing.assert_allclose(np.nansum(report['qinc_front']),
                               expected_qinc_front)
    np.testing.assert_allclose(np.nansum(report['qabs_front']), 5347.050682)