def main(): loss_fn = ProposalLoss(cfg) preprocessor = TrainPreprocessor(cfg) model = PV_RCNN(cfg, preprocessor).cuda() dataloader_train = build_train_dataloader(cfg) parameters = get_proposal_parameters(model) optimizer = torch.optim.Adam(parameters, lr=cfg.TRAIN.LR) start_epoch = load_ckpt('./epoch_0.pth', model, optimizer) train_model(model, dataloader_train, optimizer, loss_fn, cfg.TRAIN.EPOCHS, start_epoch)
def main(): """TODO: Trainer class to manage objects.""" model = Second(cfg).cuda() parameters = model.parameters() loss_fn = ProposalLoss(cfg) preprocessor = TrainPreprocessor(cfg) dataloader = build_train_dataloader(cfg, preprocessor) optimizer = torch.optim.Adam(parameters, lr=0.01) start_epoch = load_ckpt('./ckpts/epoch_10.pth', model, optimizer) scheduler = build_lr_scheduler(optimizer, cfg, start_epoch, len(dataloader)) train_model(model, dataloader, optimizer, scheduler, loss_fn, cfg.TRAIN.EPOCHS, start_epoch)
def main(): """TODO: Trainer class to manage objects.""" # model = Second(cfg).cuda() model = PV_RCNN(cfg).cuda() print("Number parameters: ", sum(p.numel() for p in model.parameters() if p.requires_grad)) parameters = model.parameters() loss_fn = ProposalLoss(cfg) # loss_fn = OverallLoss(cfg) preprocessor = TrainPreprocessor(cfg) dataloader = build_train_dataloader(cfg, preprocessor) optimizer = torch.optim.Adam(parameters, lr=0.01) start_epoch = load_ckpt('./ckpts/epoch_10.pth', model, optimizer) scheduler = build_lr_scheduler(optimizer, cfg, start_epoch, len(dataloader)) train_model(model, dataloader, optimizer, scheduler, loss_fn, cfg.TRAIN.EPOCHS, start_epoch)
def main(): """TODO: Trainer class to manage objects.""" model = PV_RCNN(cfg).cuda() loss_fn = ProposalLoss(cfg) preprocessor = TrainPreprocessor(cfg) dataloader = build_train_dataloader(cfg, preprocessor) parameters = get_proposal_parameters(model) optimizer = torch.optim.Adam(parameters, lr=cfg.TRAIN.LR) scheduler = torch.optim.lr_scheduler.OneCycleLR( optimizer, max_lr=3e-3, steps_per_epoch=len(dataloader), epochs=cfg.TRAIN.EPOCHS) start_epoch = load_ckpt('./ckpts/epoch_8.pth', model, optimizer) train_model(model, dataloader, optimizer, scheduler, loss_fn, cfg.TRAIN.EPOCHS, start_epoch)