def _generate_x(self): # generate an "x" (1 < x < q), where q is (p-1)/2. # p is a 128-byte (1024-bit) number, where the first 64 bits are 1. # therefore q can be approximated as a 2^1023. we drop the subset of # potential x where the first 63 bits are 1, because some of those # will be larger than q (but this is a tiny tiny subset of # potential x). while 1: x_bytes = os.urandom(128) x_bytes = byte_mask(x_bytes[0], 0x7f) + x_bytes[1:] if (x_bytes[:8] != b7fffffffffffffff and x_bytes[:8] != b0000000000000000): break self.x = util.inflate_long(x_bytes)
def _generate_x(self): # generate an "x" (1 < x < (p-1)/2). q = (self.p - 1) // 2 qnorm = util.deflate_long(q, 0) qhbyte = byte_ord(qnorm[0]) byte_count = len(qnorm) qmask = 0xff while not (qhbyte & 0x80): qhbyte <<= 1 qmask >>= 1 while True: x_bytes = os.urandom(byte_count) x_bytes = byte_mask(x_bytes[0], qmask) + x_bytes[1:] x = util.inflate_long(x_bytes, 1) if (x > 1) and (x < q): break self.x = x
def _roll_random(n): """returns a random # from 0 to N-1""" bits = util.bit_length(n - 1) byte_count = (bits + 7) // 8 hbyte_mask = pow(2, bits % 8) - 1 # so here's the plan: # we fetch as many random bits as we'd need to fit N-1, and if the # generated number is >= N, we try again. in the worst case (N-1 is a # power of 2), we have slightly better than 50% odds of getting one that # fits, so i can't guarantee that this loop will ever finish, but the odds # of it looping forever should be infinitesimal. while True: x = os.urandom(byte_count) if hbyte_mask > 0: x = byte_mask(x[0], hbyte_mask) + x[1:] num = util.inflate_long(x, 1) if num < n: break return num