예제 #1
0
  def testFromWHY19(self):
    bn = gum.fastBN("X->Y;U")
    d = csl.CausalModel(bn, [('Z', ["X", "Y", "U"])], True)
    _, pot, _ = csl.causalImpact(d, on="Y", doing="X")
    self.assertIsNone(pot)  # HedgeException

    # Causality, Pearl, 2009, p66
    bn = gum.fastBN("Z1->Z2->Z3->Y<-X->Z2;Z2->Y;Z1->X->Z3<-Z1")
    c = csl.CausalModel(bn, [("Z0", ("X", "Z1", "Z3"))], False)
    _, pot, explanation = csl.causalImpact(c, "Y", "X")
    self.assertIsNotNone(pot)
    self.assertEqual(explanation, "Do-calculus computations")
예제 #2
0
  def test_simpson(self):
    m1 = gum.fastBN("Gender->Drug->Patient;Gender->Patient")

    # Gender = 0 == male
    # Gender = 1 == female

    # Drug == 0 - not taking the Drug
    # Drug == 1 - taking the Drug

    # Patient = 0 -- not healed
    # Patient = 1 - healed

    m1.cpt("Gender")[:] = [0.5, 0.5]
    m1.cpt("Drug")[:] = [[0.25, 0.75],  # Gender=0
                         [0.75, 0.25]]  # Gender=1

    m1.cpt("Patient")[{'Drug': 0, 'Gender': 0}] = [
      0.2, 0.8]  # No Drug, Male -> healed in 0.8 of cases
    # No Drug, Female -> healed in 0.4 of cases
    m1.cpt("Patient")[{'Drug': 0, 'Gender': 1}] = [0.6, 0.4]
    m1.cpt("Patient")[{'Drug': 1, 'Gender': 0}] = [
      0.3, 0.7]  # Drug, Male -> healed 0.7 of cases
    m1.cpt("Patient")[{'Drug': 1, 'Gender': 1}] = [
      0.8, 0.2]  # Drug, Female -> healed in 0.2 of cases

    d1 = csl.CausalModel(m1)

    # from formula : \sum_{ Gender  }{ P(Patient\mid Drug,Gender) \cdot P(Gender) }
    margPatient = (m1.cpt("Patient") * m1.cpt("Gender")).margSumOut(["Gender"])

    lat, pot, expl = csl.causalImpact(
      d1, on="Patient", doing={"Drug"})  # when drug=1
    self.assertEqual(pot, margPatient)
예제 #3
0
  def testCounterfactual(self):
    # experience=10-4*education+Ux
    # salaire=65+2.5*experience+5*education+Us
    #
    # Ux : [-2,10], sans a priori
    # Us : [0,25], sans a priori
    # education : 0,1,2 (low, medium, high), a priori [0.4,0.40.2]
    # experience : [0,20]
    # salaire : [65,150]

    edex = gum.fastBN(
      "Ux[-2,10]->experience[0,20]<-education{low|medium|high}->salary[65,150]<-Us[0,25];experience->salary")
    edex.cpt("Us").fillWith(1).normalize()
    edex.cpt("Ux").fillWith(1).normalize()
    edex.cpt("education")[:] = [0.4, 0.4, 0.2]
    edex.cpt("experience").fillWithFunction("10-4*education+Ux")
    edex.cpt("salary").fillWithFunction("round(65+2.5*experience+5*education+Us)")

    pot = csl.counterfactual(cm=csl.CausalModel(edex),
                             profile={'experience': 8, 'education': 'low', 'salary': '86'},
                             whatif={"education"},
                             on={"salary"},
                             values={"education": "medium"})

    self.assertEqual(pot[81 - 65], 1.0)
예제 #4
0
  def test_CRAN1(self):
    bn = gum.fastBN("w->x->z->y;w->z")

    bn.cpt("w")[:] = [0.5, 0.5]

    bn.cpt("x")[:] = [[0.4, 0.6], [0.3, 0.7]]

    bn.cpt("z")[{'w': 0, 'x': 0}] = [0.2, 0.8]
    bn.cpt("z")[{'w': 0, 'x': 1}] = [0.1, 0.9]
    bn.cpt("z")[{'w': 1, 'x': 0}] = [0.4, 0.6]
    bn.cpt("z")[{'w': 1, 'x': 1}] = [0.5, 0.5]

    bn.cpt("y")[:] = [[0.1, 0.9], [0.2, 0.8]]

    d = csl.CausalModel(bn, [("lat1", ["x", "y"])])

    # from the formula \sum_{ z ,w  }{ P(z\mid w,x) \cdot P(w) \cdot
    #                                 \sum_{ x'  }{ P(y\mid w,x',z) \cdot P(x'\mid w) }
    #                               }
    marg = (bn.cpt("x") * bn.cpt("y")).margSumOut(["x"])
    marg = (marg * bn.cpt("w") * bn.cpt("z")).margSumOut(["z", "w"])

    _, pot, _ = csl.causalImpact(d, on={"y"}, doing={"x"})  # when x=1
    self.assertEqual(pot, marg)
    _, pot, _ = csl.causalImpact(d, on="y", doing="x")  # when x=1
    self.assertEqual(pot, marg)
예제 #5
0
 def test_DoCalculusp213(self):
     fd = gum.fastBN("w->z->x->y")
     fdModele = csl.CausalModel(fd, [("u1", ["w", "x"]),
                                     ("u2", ["w", "y"])], True)
     formula, impact, explanation = csl.causalImpact(fdModele,
                                                     on="y",
                                                     doing="x")
예제 #6
0
    def setUp(self):
        m = gum.fastBN("z2->x->z1->y;z2->z1;z2->z3->y")

        m.cpt("z2")[:] = [0.5, 0.5]
        m.cpt("x")[:] = [
            [0.4, 0.6],  # z2=0
            [0.4, 0.6]
        ]  # z2=1
        m.cpt("z3")[:] = [
            [0.3, 0.7],  # z2=0
            [0.3, 0.7]
        ]  # z2=1
        m.cpt("z1")[{"z2": 0, "x": 0}] = [0.2, 0.8]
        m.cpt("z1")[{"z2": 0, "x": 1}] = [0.25, 0.75]
        m.cpt("z1")[{"z2": 1, "x": 0}] = [0.1, 0.9]
        m.cpt("z1")[{"z2": 1, "x": 1}] = [0.15, 0.85]

        m.cpt("y")[{"z1": 0, "z3": 0}] = [0.5, 0.5]
        m.cpt("y")[{"z1": 0, "z3": 1}] = [0.45, 0.55]
        m.cpt("y")[{"z1": 1, "z3": 0}] = [0.4, 0.6]
        m.cpt("y")[{"z1": 1, "z3": 1}] = [0.35, 0.65]

        self.d = csl.CausalModel(m,
                                 [("X-Z2", ["x", "z2"]), ("X-Z3", ["x", "z3"]),
                                  ("X-Y", ["x", "y"]),
                                  ("Y-Z2", ["y", "z2"])], True)
        try:
            formula, result, msg = csl.causalImpact(self.d,
                                                    on={"y", "z2", "z1", "z3"},
                                                    doing={"x"})
        except csl.HedgeException as h:
            self.fail("Should not raise")
예제 #7
0
  def test_CRAN2(self):
    bn = gum.fastBN("Z1->X->Z2->Y")

    d = csl.CausalModel(bn, [("L1", ["Z1", "X"]),
                             ("L2", ["Z1", "Z2"]),
                             ("L3", ["Z1", "Y"]),
                             ("L4", ["Y", "X"])],
                        True)

    _, pot, _ = csl.causalImpact(d, on="Y", doing={"X"})

    self.assertIsNone(pot)
예제 #8
0
  def test_tobacco1(self):
    obs1 = gum.fastBN("Smoking->Cancer")
    obs1.cpt("Smoking")[:] = [0.6, 0.4]
    obs1.cpt("Cancer")[{"Smoking": 0}] = [0.9, 0.1]
    obs1.cpt("Cancer")[{"Smoking": 1}] = [0.7, 0.3]

    modele1 = csl.CausalModel(obs1)
    lat, pot, expl = csl.causalImpact(
      modele1, "Cancer", "Smoking")  # when doing is 1
    self.assertEqual(pot, obs1.cpt("Cancer"))

    modele2 = csl.CausalModel(obs1, [("Genotype", ["Smoking", "Cancer"])])
    lat, pot, expl = csl.causalImpact(
      modele2, "Cancer", {"Smoking"}, values={"Smoking": 1})
    margCancer = (obs1.cpt("Smoking") * obs1.cpt("Cancer")
                  ).margSumOut(["Smoking"])
    self.assertEqual(pot, margCancer)

    modele3 = csl.CausalModel(
      obs1, [("Genotype", ["Smoking", "Cancer"])], True)
    lat, pot, expl = csl.causalImpact(
      modele3, "Cancer", {"Smoking"}, values={"Smoking": 1})
    self.assertIsNone(pot)
예제 #9
0
  def testFromNotebooks(self):
    bn = gum.fastBN("w->x->z->y;w->z")

    bn.cpt("w")[:] = [0.7, 0.3]

    bn.cpt("x")[:] = [[0.4, 0.6], [0.3, 0.7]]

    bn.cpt("z")[{'w': 0, 'x': 0}] = [0.2, 0.8]
    bn.cpt("z")[{'w': 0, 'x': 1}] = [0.1, 0.9]
    bn.cpt("z")[{'w': 1, 'x': 0}] = [0.9, 0.1]
    bn.cpt("z")[{'w': 1, 'x': 1}] = [0.5, 0.5]

    bn.cpt("y")[:] = [[0.1, 0.9], [0.8, 0.2]]

    d = csl.CausalModel(bn, [("lat1", ["x", "y"])])

    _, pot, _ = csl.causalImpact(d, on="y", doing="x")
    self.assertIsNotNone(pot)
예제 #10
0
 def test_Carouselp115(self):
     ab = gum.fastBN('Elapsed time[11]->Bag on Carousel<-Bag on Plane')
     ab.cpt("Bag on Plane").fillWith(1).normalize()
     ab.cpt("Elapsed time").fillWith(1).normalize()
     ab.cpt("Bag on Carousel").fillWith(
         [1.0, 0.0] * 11 +
         [1 - i / 20 if i % 2 == 0 else (i - 1) / 20 for i in range(22)])
     abModele = csl.CausalModel(ab)
     formula, impact, explanation = csl.causalImpact(
         abModele,
         on={"Bag on Plane"},
         doing={"Elapsed time"},
         knowing={"Bag on Carousel"},
         values={
             "Elapsed time": 7,
             "Bag on Carousel": 0
         })
     self.assertAlmostEqual(impact[0], 0.7692, 4)
예제 #11
0
  def test_tobacco2(self):
    obs2 = gum.fastBN("Smoking->Tar->Cancer;Smoking->Cancer")
    obs2.cpt("Smoking")[:] = [0.6, 0.4]
    obs2.cpt("Tar")[{"Smoking": 0}] = [0.9, 0.1]
    obs2.cpt("Tar")[{"Smoking": 1}] = [0.7, 0.3]
    obs2.cpt("Cancer")[{"Tar": 0, "Smoking": 0}] = [0.9, 0.1]
    obs2.cpt("Cancer")[{"Tar": 1, "Smoking": 0}] = [0.8, 0.2]
    obs2.cpt("Cancer")[{"Tar": 0, "Smoking": 1}] = [0.7, 0.3]
    obs2.cpt("Cancer")[{"Tar": 1, "Smoking": 1}] = [0.6, 0.4]

    modele4 = csl.CausalModel(obs2, [("Genotype", ["Smoking", "Cancer"])])

    # from formula : \sum_{ Tar  }{ P(Tar\mid Smoking) \cdot
    #                               \sum_{ Smoking'  }{ P(Cancer\mid Smoking',Tar) \cdot P(Smoking') }
    #                             }
    margCancer = (obs2.cpt("Cancer") * obs2.cpt("Smoking")
                  ).margSumOut(['Smoking'])
    margCancer = (margCancer * obs2.cpt("Tar")).margSumOut(['Tar'])

    lat, pot, _ = csl.causalImpact(
      modele4, "Cancer", "Smoking")  # when smoking=1
    self.assertEqual(pot, margCancer)
예제 #12
0
    def setUp(self):
        m1 = gum.fastBN("Gender->Drug->Patient;Gender->Patient")

        m1.cpt("Gender")[:] = [0.5, 0.5]
        m1.cpt("Drug")[:] = [
            [0.25, 0.75],  # Gender=0
            [0.75, 0.25]
        ]  # Gender=1

        m1.cpt("Patient")[{
            'Drug': 0,
            'Gender': 0
        }] = [0.2, 0.8]  # No Drug, Male -> healed in 0.8 of cases
        # No Drug, Female -> healed in 0.4 of cases
        m1.cpt("Patient")[{'Drug': 0, 'Gender': 1}] = [0.6, 0.4]
        m1.cpt("Patient")[{
            'Drug': 1,
            'Gender': 0
        }] = [0.3, 0.7]  # Drug, Male -> healed 0.7 of cases
        m1.cpt("Patient")[{
            'Drug': 1,
            'Gender': 1
        }] = [0.8, 0.2]  # Drug, Female -> healed in 0.2 of cases
        self.model = csl.CausalModel(m1)
예제 #13
0
mod.add(gum.LabelizedVariable("tar"))
mod.add(gum.LabelizedVariable("cancer"))

mod.addArc(0, 1)  # smoking -> tar -> cancer; smoking -> cancer
mod.addArc(1, 2)
mod.addArc(0, 2)

# Smoking
mod.cpt(0)[:] = [0.5, 0.5]

# Tar deposits
mod.cpt(1)[:] = [0.4, 0.6], [0.3, 0.6]

# Lung Cancer
mod.cpt(2)[{"smoking": 0, "tar": 0}] = [0.1, 0.9]
mod.cpt(2)[{"smoking": 0, "tar": 1}] = [0.15, 0.85]
mod.cpt(2)[{"smoking": 1, "tar": 0}] = [0.2, 0.8]
mod.cpt(2)[{"smoking": 1, "tar": 1}] = [0.25, 0.75]

d = csl.CausalModel(mod, [("Genotype", ["smoking", "cancer"])],
                    False)  # False == do not keep arcs
cslnb.showCausalModel(d)

try:
    a = csl.doCalculusWithObservation(d, "cancer", {"smoking"})
except csl.HedgeException as h:
    print(h.message)

# the variable "a" shows us the front-door adjustment formula for smoking causes lung cancer
display(Math(a.toLatex()))
예제 #14
0
 def test_AccentsInVariables(self):
     bn = gum.fastBN("héhé->hoho")
     cm = csl.CausalModel(bn)
     formula, impact, explanation = csl.causalImpact(cm, "héhé", "hoho")
예제 #15
0
bn = gum.fastBN("w->x->z->y;w->z")

# -- conditional probability tables
bn.cpt('w')[:] = [0.7, 0.3]

bn.cpt('x')[:] = [0.4, 0.6], [0.3, 0.7]

bn.cpt('z')[{'w': 0, 'x': 0}] = [0.2, 0.8]
bn.cpt('z')[{'w': 0, 'x': 1}] = [0.1, 0.9]
bn.cpt('z')[{'w': 1, 'x': 0}] = [0.9, 0.1]
bn.cpt('z')[{'w': 1, 'x': 1}] = [0.5, 0.5]

bn.cpt('y')[:] = [0.1, 0.9], [0.8, 0.2]

# **** Causal model plot ****

# d is a causal model! It receives a bayesian network and the unmeasured variables in it along
# with the variables that are affected by these latent variables

# -- "lat1" is an unmeasured variable that affects X and Y (its parent of both -- the common cause in the fork)
d = csl.CausalModel(bn, [("lat1", ['x', 'y'])])

# -- causal impact of X on Y when we do(X = 0)
# this works but the representation of the causal impact returned isn't very good
###### csl.causalImpact(d, 'y', 'x', '', {'x':0})

# shows the causal impact of X on Y, when we do(X = 0), on the causal model D
cslnb.showCausalImpact(d, "y", "x", values={"x": 0})

# causal impact of X on Y when do(X = 1), on causal model d
cslnb.showCausalImpact(d, "y", "x", values={"x": 1})
예제 #16
0
# This example is from the book --- Causal Inference in Statistics: A Primer
# page 62, figure 3.6

from IPython.display import display, Math, Latex, HTML

import pyAgrum as gum
import pyAgrum.lib.notebook as gnb
import pyAgrum.causal as csl
import pyAgrum.causal.notebook as cslnb

bn = gum.fastBN("x->y<-w")

# -- conditional probabilities table
bn.cpt('w')[:] = [0.7, 0.3]

bn.cpt('x')[:] = [0.4, 0.6]

bn.cpt('y')[{'x': 0, 'w': 0}] = [0.2, 0.8]
bn.cpt('y')[{'x': 0, 'w': 1}] = [0.1, 0.9]
bn.cpt('y')[{'x': 1, 'w': 0}] = [0.9, 0.1]
bn.cpt('y')[{'x': 1, 'w': 0}] = [0.5, 0.5]

# ** making the Causal Model

d = csl.CausalModel(bn, [('z', ['x', 'w'])])

cslnb.showCausalImpact(d, 'y', 'x', values={'x': 0})
cslnb.showCausalImpact(d, 'y', 'x', values={'x': 1})
예제 #17
0
from IPython.display import display, Math, Latex, HTML

import pyAgrum as gum
import pyAgrum.lib.notebook as gnb
import pyAgrum.causal as csl
import pyAgrum.causal.notebook as cslnb

bn = gum.fastBN("smoking->tar->cancer")

# -- conditional probabilities table --
bn.cpt("smoking")[:] = [0.5, 0.5]

bn.cpt("tar")[{"smoking": 0}] = [380 / 400, 20 / 400]
bn.cpt("tar")[{"smoking": 1}] = [20 / 400, 380 / 400]

bn.cpt("cancer")[{"tar": 0, "smoking": 0}] = [0.1, 0.9]
bn.cpt("cancer")[{"tar": 0, "smoking": 1}] = [0.9, 0.1]
bn.cpt("cancer")[{"tar": 1, "smoking": 0}] = [0.05, 0.95]
bn.cpt("cancer")[{"tar": 1, "smoking": 1}] = [0.85, 0.15]

d = csl.CausalModel(bn, [("genes", ["smoking", "cancer"])])

cslnb.showCausalImpact(d, "cancer", "smoking", values={"smoking": 1})
cslnb.showCausalImpact(d, "cancer", "smoking", values={"smoking": 0})