예제 #1
0
파일: support.py 프로젝트: nbeney/tools
 def _reinit_pdl(self, f):
     pdl.clear()
     self._reinit_pdl_facts()
     self._reinit_pdl_predicates()
     self._reinit_pdl_functions()
     if f:
         self._read_facts_from_file(f)
예제 #2
0
 def _reinit_pdl(self, f):
     pdl.clear()
     self._reinit_pdl_facts()
     self._reinit_pdl_predicates()
     self._reinit_pdl_functions()
     if f:
         self._read_facts_from_file(f)
예제 #3
0
def test2():
    """ Deep recursion """
    pyDatalog.clear()
    @pyDatalog.program()
    def _(): # the function name is ignored

        + even(0)
        even(N) <= (N > 0) & odd(N-1)
        assert ask(even(0)) == set([()])
        odd(N) <= (N > 0) & even(N-1)

        assert ask(odd(9999)) == set([()])
예제 #4
0
def test1():
    """ Large database + deep recursion """
    pyDatalog.clear()
    for i in range(10000):
        pyDatalog.assert_fact('successor', i + 1, i + 0)

    @pyDatalog.program()
    def _():  # the function name is ignored
        assert ask(successor(1801, 1800)) == set([(1801, 1800)])

        +even(0)
        even(N) <= (N > 0) & successor(N, N1) & odd(N1)
        odd(N) <= (N > 0) & successor(N, N2) & even(N2)

        assert ask(odd(299)) == set([(299, )])
        assert ask(odd(9999)) == set([(9999, )])
예제 #5
0
def test1():

    """ Large database + deep recursion """
    pyDatalog.clear()
    for i in range(10000):
        pyDatalog.assert_fact('successor', i+1, i+0)
        
    @pyDatalog.program()
    def _(): # the function name is ignored
        assert ask(successor(1801,1800)) == set([()])

        + even(0)
        even(N) <= (N > 0) & successor(N,N1) & odd(N1)
        odd(N) <= (N > 0) & successor(N,N2) & even(N2)
        
        assert ask(odd(299)) == set([()]) 
        assert ask(odd(9999)) == set([()])
예제 #6
0
def build_datalog_model(union):
    pyDatalog.clear()
    for d in union.values:
        # Extensional Database
        assert_fact('rdf_star_triple', d[0], d[1], d[2])
    # Intentional Database
    inferred_rdf_star_triple(A, B, T) <= rdf_star_triple(A, B, T)  # & (T._in(ddiTypeToxicity))
    inferred_rdf_star_triple(A, C, T2) <= inferred_rdf_star_triple(A, B, T) & rdf_star_triple(B, C, T2) & (
        T._in(ddiTypeToxicity)) & (T2._in(ddiTypeToxicity)) & (A != C)

    inferred_rdf_star_triple(A, B, T) <= rdf_star_triple(A, B, T)  # & (T._in(ddiTypeEffectiveness))
    inferred_rdf_star_triple(A, C, T2) <= inferred_rdf_star_triple(A, B, T) & rdf_star_triple(B, C, T2) & (
        T._in(ddiTypeEffectiveness)) & (T2._in(ddiTypeEffectiveness)) & (A != C)

    wedge(A, B, C, T, T2) <= inferred_rdf_star_triple(A, B, T) & inferred_rdf_star_triple(B, C, T2) & (A != C)

    wedge_pharmacokinetic(A, B, C, T, T2) <= inferred_rdf_star_triple(A, B, T) & inferred_rdf_star_triple(B, C, T2) & (
        T._in(pharmacokinetic_ddi)) & (T2._in(pharmacokinetic_ddi)) & (A != C)
예제 #7
0
def eval_datalog(data, rule):
    """
    Evaluation using pyDatalog.
    :param data: a list of tuple string
    :param rule: a rule node
    :return: a list of resulting tuple string
    """
    assert isinstance(data, list)
    assert isinstance(rule, RuleNode)

    def extract_query_predicate(rule):
        # print(rule)
        return QUERY_PRED.match(rule).group(1)

    # def db2str(tuples):
    #     return "\n".join(["+%s(%s,%s)" % (p, s, o) for (s, p, o) in tuples])

    def result2tuplestring(result):
        # print(rule)
        # query_pred = extract_query_predicate(rule.left)
        for (s, o) in result:
            yield (s, rule.left, o)

    pyDatalog.clear()
    # loguru.logger.debug('Size of loaded data: %d' % len(data))
    for (s, p, o) in data:
        pyDatalog.assert_fact(p, s, o)
    pyDatalog.load(str(rule))

    result = pyDatalog.ask(rule.left + '(X, Y)')

    if not result:
        loguru.logger.debug("Empty evaluation")
        return []

    # if rule.left == config.query_relation_name:
    #     pyDatalog.ask(config.query_relation_name + "(" + config.subject + ", Y)")

    return list(result2tuplestring(result.answers))
예제 #8
0
def db_input(input, window, possible_relations):
    global Relations
    busy(window)
    inverted = [0, 1, 2, 5]
    Relations = []
    pyDatalog.clear()
    try:  # If file exists
        with open(input.get(), 'r', encoding="utf8") as csvfile:
            spamreader = csv.reader(csvfile,
                                    delimiter='\t',
                                    lineterminator='\n')

            for row in spamreader:
                first_index = row[0].index(":")  # Search first word
                second_index = row[2].index(":")  # Search second word
                relation = row[1]
                # If relation is generator -> generated
                if possible_relations.index(relation) in inverted:
                    child_lang = row[2][0:second_index]
                    child = row[2][second_index + 2:]
                    parent_lang = row[0][0:first_index]
                    parent = row[0][first_index + 2:]
                # If relation is generated -> generator
                else:
                    child_lang = row[0][0:first_index]
                    child = row[0][first_index + 2:]
                    parent_lang = row[2][0:second_index]
                    parent = row[2][second_index + 2:]
                # Relations[possible_relations.index(relation)].append(
                #     [child_lang, child, relation, parent_lang, parent])
                # Add to knowledge database
                Relations.append(
                    Relation(child_lang, child, relation, parent_lang, parent))

        messagebox.showinfo("Let's Continue!", "The upload is done!")
    except:
        messagebox.showwarning("Error!", "The file can't be upload.")

    notbusy(window)
예제 #9
0
파일: tools.py 프로젝트: vkopey/ThreadsPLM
def runDatalog(facts, rules, predicates):
    """виконує логічне виведення в pyDatalog. Повертає список тріплетів.
    facts - список Datalog-фактів,
    rules - список Datalog-правил,
    predicates - список предикатів, для яких будуть шукатись факти"""

    #if not predicates:
    #    predicates={p for s,p,o in facts}|{r.split('(')[0] for r in rules}

    from pyDatalog.pyDatalog import assert_fact, load, ask, clear
    code = '\n'.join(facts) + '\n' + '\n'.join(rules)  # факти і правила
    load(code)
    allFacts = set()
    for pred in predicates:
        # try:
        res = ask('%s(X,Y)' % pred).answers
        # except AttributeError: #Predicate without definition
        #     continue
        for subj, obj in res:
            allFacts.add((subj.encode('utf-8'), pred.encode('utf-8'),
                          obj.encode('utf-8')))
            print subj, pred, obj
    clear()
    return allFacts
예제 #10
0
from pyDatalog.pyDatalog import create_terms, ask, load, assert_fact, clear

if __name__ == "__main__":
    clear()
    create_terms('X, frog, canary, green, yellow, chirps, sings, croakes, eatFlies')

    load("""
        frog(X) <= croakes(X) & eatFlies(X)
        canary(X) <= chirps(X) & sings(X)
        green(X) <= frog(X)
        yellow(X) <= canary(X)
    """)

    assert_fact('croakes', 'fritz')
    assert_fact('eatFlies', 'fritz')

    print("frog: ", ask('frog(X)'))
    print("green: ", ask('green(X)'))
    print("green: ", ask("green('cuitcuit')"))

예제 #11
0
# ---------------------------------------------------------------------------
# Social graph analysis:
# work through this code from top to bottom (in the way you would use a R or Jupyter notebook as well...) and write datalog clauses
# and python code in order to solve the respective tasks. Overall, there are 7 tasks.
# ---------------------------------------------------------------------------
calls = pa.read_csv('calls.csv', sep='\t', encoding='utf-8')
texts = pa.read_csv('texts.csv', sep='\t', encoding='utf-8')

suspect = 'Quandt Katarina'
company_Board = ['Soltau Kristine', 'Eder Eva', 'Michael Jill']

pyDatalog.create_terms('knows', 'has_link', 'board_member', 'has_path', 'short_path', 'short_path', 'COUNTER',
                       'COUNTER2', 'many_more_needed', 'X', 'Y', 'Z',
                       'P', 'P2', 'DATE', 'DATE2', 'TP', 'TP2', 'paths')
pyDatalog.clear()  # clears all facts and clauses

# First, treat calls as simple social links (denoted as knows), that have no date
for i in range(0, 150):
    +knows(calls.iloc[i, 1], calls.iloc[i, 2])

# Create predicate to check if a person is a member of the board
for i in range(len(company_Board)):
    +board_member(company_Board[i])

# Task 1: Knowing someone is a bi-directional relationship -> define the predicate accordingly
knows(X, Y) <= knows(Y, X)
print("\nWho knows the suspect?\n")
print(knows(suspect, Y))

예제 #12
0
파일: test.py 프로젝트: bellomarini/DyDiPy
def test():

    # test of expressions
    pyDatalog.load("""
        + p(a) # p is a proposition
    """)
    assert pyDatalog.ask('p(a)') == set([('a',)])
    
    pyDatalog.assert_fact('p', 'a', 'b')
    assert pyDatalog.ask('p(a, "b")') == set([('a', 'b')])
    pyDatalog.retract_fact('p', 'a', 'b')
    assert pyDatalog.ask('p(a, "b")') == None
    
    """unary facts                                                            """
    
    @pyDatalog.program()
    def unary(): 
        +z()
        assert ask(z()) == set([()])
        
        + p(a) 
        # check that unary queries work
        assert ask(p(a)) == set([('a',)])
        assert ask(p(X)) == set([('a',)])
        assert ask(p(Y)) == set([('a',)])
        assert ask(p(_X)) == set([('a',)])
        assert ask(p(b)) == None
        assert ask(p(a) & p(b)) == None
        
        + p(b)
        assert ask(p(X), _fast=True) == set([('a',), ('b',)])
        
        + p(b) # facts are unique
        assert ask(p(X)) == set([('a',), ('b',)])
        
        - p(b) # retract a unary fact
        assert ask(p(X)) == set([('a',)])
        
        - p(a)
        assert ask(p(X)) == None
        + p(a)
        
        # strings and integers
        + p('c')
        assert ask(p(c)) == set([('c',)])
        
        + p(1)
        assert ask(p(1)) == set([(1,)])
        
        + n(None)
        assert ask(n(X)) == set([(None,)])
        assert ask(n(None)) == set([(None,)])
        
        # spaces and uppercase in strings
        + farmer('Moshe dayan')
        + farmer('omar')
        assert ask(farmer(X)) == set([('Moshe dayan',), ('omar',)])

    # execute queries in a python program
    moshe_is_a_farmer = pyDatalog.ask("farmer('Moshe dayan')")
    assert moshe_is_a_farmer == set([('Moshe dayan',)])

    """ binary facts                                                         """
    
    @pyDatalog.program()
    def binary(): 
        + q(a, b)
        assert ask(q(a, b)) == set([('a', 'b')])
        assert ask(q(X, b)) == set([('a', 'b')])
        assert ask(q(a, Y)) == set([('a', 'b')])
        assert ask(q(a, c)) == None
        assert ask(q(X, Y)) == set([('a', 'b')])
        
        + q(a,c)
        assert ask(q(a, Y)) == set([('a', 'b'), ('a', 'c')])
        
        - q(a,c)
        assert ask(q(a, Y)) == set([('a', 'b')])
        
        assert ask(q(X, X)) == None 
        +q(a, a)
        assert ask(q(X, X)) == set([('a', 'a')])
        -q(a, a) 
        
    """ (in)equality                                             """

    @pyDatalog.program()
    def equality():
        assert ask(X==1) == set([(1,)]) 
        assert ask(X==Y) == None
        assert ask(X==Y+1) == None
        assert ask((X==1) & (Y==1) & (X==Y)) == set([(1,1)])
        assert ask((X==1) & (Y==2) & (X==Y-1)) == set([(1,2)])
        #assert ask((X==1) & (Y==2) & (X+2==Y+1)) == set([(1,2)])
        assert ask((X==2) & (Y==X/2)) == set([(2,1)])
        assert ask((X==2) & (Y==X//2)) == set([(2,1)])
        
        assert ask((X==1) & (Y==1+X)) == set([(1,2)])
        assert ask((X==1) & (Y==1-X)) == set([(1,0)])
        assert ask((X==1) & (Y==2*X)) == set([(1,2)])
        assert ask((X==2) & (Y==2/X)) == set([(2,1)])
        assert ask((X==2) & (Y==2//X)) == set([(2,1)])
        
    """ Conjunctive queries                                             """

    @pyDatalog.program()
    def conjuctive(): 
        assert ask(q(X, Y) & p(X)) == set([('a', 'b')])

        assert ask(p(X) & p(a)) == set([('a',),('c',),(1,)])
        assert ask(p(X) & p(Y) & (X==Y)) == set([('a', 'a'), ('c', 'c'), (1, 1)])
        assert ask(p(X) & p(Y) & (X==Y) & (Y==a)) == set([('a', 'a')])

        assert ask(q(X, Y)) == set([('a', 'b')])
        assert ask(q(X, Y) & p(X)) == set([('a', 'b')])
    
    @pyDatalog.program()
    def equality2():
        assert ask((X==1) & (X<X+1)) == set([(1,)]) 
        assert ask((X==1) & (Y==X)) == set([(1,1)]) 
        assert ask((X==1) & (Y==X+1)) == set([(1,2)])
        assert ask((X==1) & (Y==X+1) & (X<Y)) == set([(1,2)])
        assert ask((X==1) & (X<1)) == None
        assert ask((X==1) & (X<=1)) == set([(1,)])
        assert ask((X==1) & (X>1)) == None
        assert ask((X==1) & (X>=1)) == set([(1,)])
#       assert ask(X==(1,2)) == set([((1,2), (1,2))])
        assert ask(X in (1,)) == set([(1,)])
        assert ask((X==1) & (X not in (2,))) == set([(1,)])
        assert ask((X==1) & ~(X in (2,))) == set([(1,)])
        assert ask((X==1) & (X not in (1,))) == None
        assert ask((X==1) & ~(X in (1,))) == None

    @pyDatalog.program()
    def equality3():
        # equality (must be between parenthesis):
        s(X) <= (X == a)
        assert ask(s(X)) == set([('a',)])
        s(X) <= (X == 1)
        assert ask(s(X)) == set([(1,), ('a',)])
        
        s(X, Y) <= p(X) & (X == Y)
        assert ask(s(a, a)) == set([('a', 'a')])
        assert ask(s(a, b)) == None
        assert ask(s(X,a)) == set([('a', 'a')])
        assert ask(s(X, Y)) == set([('a', 'a'),('c', 'c'),(1, 1)])

    assert pyDatalog.ask('p(a)') == set([('a',)])

    """ clauses                                                         """
    
    @pyDatalog.program()
    def clauses(): 
    
        p2(X) <= p(X)
        assert ask(p2(a)) == set([('a',)])
        p2(X) <= p(X)
        
        r(X, Y) <= p(X) & p(Y)
        assert ask(r(a, a)) == set([('a', 'a')])
        assert ask(r(a, c)) == set([('a', 'c')])
        r(X, b) <= p(X)
        assert ask(r(a, b)) == set([('a', 'b')])
        
        - (r(X, b) <= p(X))
        assert ask(r(a, b)) == None
        
        # TODO more tests

        # integer variable
        for i in range(10):
            + successor(i+1, i)
        assert ask(successor(2, 1)) == set([(2, 1)])
        
        # built-in
        assert abs(-3)==3
        assert math.sin(3)==math.sin(3)
        
    
    """ in                                                         """
    
    pyDatalog.assert_fact('is_list', (1,2))

    @pyDatalog.program()
    def _in(): 
        assert ((X==1) & (X in (1,2))) == [(1,)]
        _in(X) <= (X in [1,2])
        assert ask(_in(1)) == set([(1,)])
        assert ask(_in(9)) == None
        assert ask(_in(X)) == set([(1,), (2,)])
        
        _in2(X) <= is_list(Y) & (X in Y)
        assert ask(_in2(X)) == set([(1,), (2,)])

        assert ask((Y==(1,2)) & (X==1) & (X in Y)) == set([((1, 2), 1)])
        assert ask((Y==(1,2)) & (X==1) & (X in Y+(3,))) == set([((1, 2), 1)])
                
    """ recursion                                                         """
    
    @pyDatalog.program()
    def recursion(): 
        + even(0)
        even(N) <= successor(N, N1) & odd(N1)
        odd(N) <= ~ even(N)
        assert ask(even(0)) == set([(0,)])
        assert ask(even(X)) == set([(4,), (10,), (6,), (0,), (2,), (8,)])
        assert ask(even(10)) == set([(10,)])
        assert ask(odd(1)) == set([(1,)])
        assert ask(odd(5)) == set([(5,)])
        assert ask(even(5)) == None
    
    """ recursion with expressions                                         """
    # reset the engine
    pyDatalog.clear()
    @pyDatalog.program()
    def recursive_expression(): 
        
        predecessor(X,Y) <= (X==Y-1)
        assert ask(predecessor(X,11)) == set([(10, 11)])
        
        p(X,Z) <= (Y==Z-1) & (X==Y-1)
        assert ask(p(X,11)) == set([(9, 11)])
        
        # odd and even
        + even(0)
        even(N) <= (N > 0) & odd(N-1)
        assert ask(even(0)) == set([(0,)])
        odd(N) <= (N > 0) & ~ even(N)
        assert ask(even(0)) == set([(0,)])
        assert ask(odd(1)) == set([(1,)])
        assert ask(odd(5)) == set([(5,)])
        assert ask(even(5)) == None
        assert ask((X==3) & odd(X+2)) == set([(3,)])
        
    # Factorial
    pyDatalog.clear()
    @pyDatalog.program()
    def factorial(): 
#        (factorial[N] == F) <= (N < 1) & (F == -factorial[-N])
#        + (factorial[1]==1)
#        (factorial[N] == F) <= (N > 1) & (F == N*factorial[N-1])
#        assert ask(factorial[1] == F) == set([(1, 1)])
#        assert ask(factorial[4] == F) == set([(4, 24)])
#        assert ask(factorial[-4] == F) == set([(-4, -24)])
        pass
    
    # Fibonacci
    pyDatalog.clear()
    @pyDatalog.program()
    def fibonacci(): 
        (fibonacci[N] == F) <= (N == 0) & (F==0)
        (fibonacci[N] == F) <= (N == 1) & (F==1)
        (fibonacci[N] == F) <= (N > 1) & (F == fibonacci[N-1]+fibonacci[N-2])
        assert ask(fibonacci[1] == F) == set([(1, 1)])
        assert ask(fibonacci[4] == F) == set([(4, 3)])
        assert ask(fibonacci[18] == F) == set([(18, 2584)])

    # string manipulation
    @pyDatalog.program()
    def _lambda(): 
        split(X, Y,Z) <= (X == Y+'-'+Z)
        assert ask(split(X, 'a', 'b')) == set([('a-b', 'a', 'b')])
        split(X, Y,Z) <= (Y == (lambda X: X.split('-')[0])) & (Z == (lambda X: X.split('-')[1]))
        assert ask(split('a-b', Y, Z)) == set([('a-b', 'a', 'b')])
        assert ask(split(X, 'a', 'b')) == set([('a-b', 'a', 'b')])
        
        (two[X]==Z) <= (Z==X+(lambda X: X))
        assert ask(two['A']==Y) == set([('A','AA')])

    """ negation                                                     """    
    
    @pyDatalog.program()
    def _negation():
        +p(a, b)
        assert ask(~p(X, b)) == None
        assert ask(~p(X, c)) == set([('X', 'c')])

    pyDatalog.load("""
        + even(0)
        even(N) <= (N > 0) & (N1==N-1) & odd(N1)
        odd(N) <= (N2==N+2) & ~ even(N) & (N2>0)
    """)
    assert pyDatalog.ask('~ odd(7)', _fast=True) == None
    assert pyDatalog.ask('~ odd(2)', _fast=True) == set([(2,)])
    assert pyDatalog.ask('odd(3)', _fast=True) == set([(3,)])
    assert pyDatalog.ask('odd(3)'             ) == set([(3,)])
    assert pyDatalog.ask('odd(5)', _fast=True) == set([(5,)])
    assert pyDatalog.ask('odd(5)'            ) == set([(5,)])
    assert pyDatalog.ask('even(5)', _fast=True) == None
    assert pyDatalog.ask('even(5)'            ) == None
    
    """ functions                                                         """
    pyDatalog.clear()
    @pyDatalog.program()
    def function(): 
        + (f[a]==b)
        assert ask(f[X]==Y) == set([('a', 'b')])
        assert ask(f[X]==b) == set([('a', 'b')]) #TODO remove 'b' from result
        assert ask(f[a]==X) == set([('a', 'b')])
        assert ask(f[a]==b) == set([('a', 'b')])
    
        + (f[a]==c)
        assert ask(f[a]==X) == set([('a', 'c')])
        
        + (f[a]==a)
        assert ask(f[f[a]]==X) == set([('a',)])
        assert ask(f[X]==f[a]) == set([('a',)])
        assert ask(f[X]==f[a]+'') == set([('a',)])
        - (f[a]==a)
        assert ask(f[f[a]]==X) == None

        + (f[a]==None)
        assert (ask(f[a]==X)) == set([('a',None)])
        + (f[a]==(1,2))
        assert (ask(f[a]==X)) == set([('a',(1,2))])
        assert (ask(f[X]==(1,2))) == set([('a',(1,2))])

        + (f[a]==c)

        + (f2[a,x]==b)
        assert ask(f2[a,x]==b) == set([('a', 'x', 'b')])
    
        + (f2[a,x]==c)
        assert ask(f2[a,x]==X) == set([('a', 'x', 'c')])
        
        g[X] = f[X]+f[X]
        assert(ask(g[a]==X)) == set([('a', 'cc')])
        
        h(X,Y) <= (f[X]==Y)
        assert (ask(h(X,'c'))) == set([('a', 'c')])
        assert (ask(h(X,Y))) == set([('a', 'c')])
        
    @pyDatalog.program()
    def function_comparison(): 
        assert ask(f[X]==Y) == set([('a', 'c')])
        assert ask(f[a]<'d') == set([('c',)])
        assert ask(f[a]>'a') == set([('c',)])
        assert ask(f[a]>='c') == set([('c',)])
        assert ask(f[a]>'c') == None
        assert ask(f[a]<='c') == set([('c',)])
        assert ask(f[a]>'c') == None
        assert ask(f[a] in ['c',]) == set([('c',)])
        
        assert ask((f[X]=='c') & (f[Y]==f[X])) == set([('a', 'a')])
        assert ask((f[X]=='c') & (f[Y]==f[X]+'')) == set([('a', 'a')])
        assert ask((f[X]=='c') & (f[Y]==(lambda X : 'c'))) == set([('a', 'a')])

        assert ask(f[X]==Y+'') == None
        assert ask((Y=='c') &(f[X]==Y+'')) == set([('c', 'a')])
        assert ask((Y=='c') &(f[X]<=Y+'')) == set([('c', 'a')])
        assert ask((Y=='c') &(f[X]<Y+'')) == None
        assert ask((Y=='c') &(f[X]<'d'+Y+'')) == set([('c', 'a')])
        assert ask((Y==('a','c')) & (f[X] in Y)) == set([(('a', 'c'), 'a')])
        assert ask((Y==('a','c')) & (f[X] in (Y+('z',)))) == set([(('a', 'c'), 'a')])

        assert ask(f[X]==f[X]+'') == set([('a',)])

    @pyDatalog.program()
    def function_negation(): 
        assert not(ask(~(f[a]<'d'))) 
        assert not(ask(~(f[X]<'d'))) 
        assert ask(~(f[a] in('d',)))
        
    """ aggregates                                                         """
    
    pyDatalog.clear()
    @pyDatalog.program()
    def sum(): 
        + p(a, c, 1)
        + p(b, b, 4)
        + p(a, b, 1)

        assert(sum(1,2)) == 3
        (a_sum[X] == sum(Y, key=Z)) <= p(X, Z, Y)
        assert ask(a_sum[X]==Y) == set([('a', 2), ('b', 4)])
        assert ask(a_sum[a]==X) == set([('a', 2)])
        assert ask(a_sum[a]==2) == set([('a', 2)])
        assert ask(a_sum[X]==4) == set([('b', 4)])
        assert ask(a_sum[c]==X) == None
        assert ask((a_sum[X]==2) & (p(X, Z, Y))) == set([('a', 'c', 1), ('a', 'b', 1)])

        (a_sum2[X] == sum(Y, for_each=X)) <= p(X, Z, Y)
        assert ask(a_sum2[a]==X) == set([('a', 1)])

        (a_sum3[X] == sum(Y, key=(X,Z))) <= p(X, Z, Y)
        assert ask(a_sum3[X]==Y) == set([('a', 2), ('b', 4)])
        assert ask(a_sum3[a]==X) == set([('a', 2)])

    @pyDatalog.program()
    def len(): 
        assert(len((1,2))) == 2
        (a_len[X] == len(Z)) <= p(X, Z, Y)
        assert ask(a_len[X]==Y) == set([('a', 2), ('b', 1)])
        assert ask(a_len[a]==X) == set([('a', 2)])
        assert ask(a_len[X]==1) == set([('b', 1)])
        assert ask(a_len[X]==5) == None
        
        (a_lenY[X] == len(Y)) <= p(X, Z, Y)
        assert ask(a_lenY[a]==X) == set([('a', 1)])
        assert ask(a_lenY[c]==X) == None
        
        (a_len2[X,Y] == len(Z)) <= p(X, Y, Z)
        assert ask(a_len2[a,b]==X) == set([('a', 'b', 1)])
        assert ask(a_len2[a,X]==Y) == set([('a', 'b', 1), ('a', 'c', 1)])

        + q(a, c, 1)
        + q(a, b, 2)
        + q(b, b, 4)

    @pyDatalog.program()
    def concat(): 
        (a_concat[X] == concat(Y, key=Z, sep='+')) <= q(X, Y, Z)
        assert ask(a_concat[X]==Y) == set([('b', 'b'), ('a', 'c+b')])
        assert ask(a_concat[a]=='c+b') == set([('a', 'c+b')])
        assert ask(a_concat[a]==X) == set([('a', 'c+b')])
        assert ask(a_concat[X]==b) == set([('b', 'b')])

        (a_concat2[X] == concat(Y, order_by=(Z,), sep='+')) <= q(X, Y, Z)
        assert ask(a_concat2[a]==X) == set([('a', 'c+b')])

        (a_concat3[X] == concat(Y, key=(-Z,), sep='-')) <= q(X, Y, Z)
        assert ask(a_concat3[a]==X) == set([('a', 'b-c')])

    @pyDatalog.program()
    def min(): 
        assert min(1,2) == 1
        (a_min[X] == min(Y, key=Z)) <= q(X, Y, Z)
        assert ask(a_min[X]==Y) == set([('b', 'b'), ('a', 'c')])
        assert ask(a_min[a]=='c') == set([('a', 'c')])
        assert ask(a_min[a]==X) == set([('a', 'c')])
        assert ask(a_min[X]=='b') == set([('b', 'b')])
        
        (a_minD[X] == min(Y, order_by=-Z)) <= q(X, Y, Z)
        assert ask(a_minD[a]==X) == set([('a', 'b')])
        
        (a_min2[X, Y] == min(Z, key=(X,Y))) <= q(X, Y, Z)
        assert ask(a_min2[Y, b]==X) == set([('a', 'b', 2),('b', 'b', 4)])
        assert ask(a_min2[Y, Y]==X) == set([('b', 'b', 4)]), "a_min2"
        
        (a_min3[Y] == min(Z, key=(-X,Z))) <= q(X, Y, Z)
        assert ask(a_min3[b]==Y) == set([('b', 4)]), "a_min3"
        
    @pyDatalog.program()
    def max(): 
        assert max(1,2) == 2
        (a_max[X] == max(Y, key=-Z)) <= q(X, Y, Z)
        assert ask(a_max[a]==X) == set([('a', 'c')])
        
        (a_maxD[X] == max(Y, order_by=Z)) <= q(X, Y, Z)
        assert ask(a_maxD[a]==X) == set([('a', 'b')])

    @pyDatalog.program()
    def rank(): 
        (a_rank1[Z] == rank(for_each=Z, order_by=Z)) <= q(X, Y, Z)
        assert ask(a_rank1[X]==Y) == set([(1, 0), (2, 0), (4, 0)])
        assert ask(a_rank1[X]==0) == set([(1, 0), (2, 0), (4, 0)])
        assert ask(a_rank1[1]==X) == set([(1, 0)])
        assert ask(a_rank1[1]==0) == set([(1, 0)])
        assert ask(a_rank1[1]==1) == None

        # rank
        (a_rank[X,Y] == rank(for_each=(X,Y2), order_by=Z2)) <= q(X, Y, Z) & q(X,Y2,Z2)
        assert ask(a_rank[X,Y]==Z) == set([('a', 'b', 1), ('a', 'c', 0), ('b', 'b', 0)])
        assert ask(a_rank[a,b]==1) == set([('a', 'b', 1)])
        assert ask(a_rank[a,b]==Y) == set([('a', 'b', 1)])
        assert ask(a_rank[a,X]==0) == set([('a', 'c', 0)])
        assert ask(a_rank[a,X]==Y) == set([('a', 'b', 1), ('a', 'c', 0)])
        assert ask(a_rank[X,Y]==1) == set([('a', 'b', 1)])
        assert ask(a_rank[a,y]==Y) == None
        # reversed
        (b_rank[X,Y] == rank(for_each=(X,Y2), order_by=-Z2)) <= q(X, Y, Z) & q(X,Y2,Z2)
        assert ask(b_rank[X,Y]==Z) == set([('a', 'b', 0), ('a', 'c', 1), ('b', 'b', 0)])
        assert ask(b_rank[a,b]==0) == set([('a', 'b', 0)])
        assert ask(b_rank[a,b]==Y) == set([('a', 'b', 0)])
        assert ask(b_rank[a,X]==1) == set([('a', 'c', 1)])
        assert ask(b_rank[a,X]==Y) == set([('a', 'b', 0), ('a', 'c', 1)])
        assert ask(b_rank[X,Y]==0) == set([('a', 'b', 0), ('b', 'b', 0)])
        assert ask(b_rank[a,y]==Y) == None

    @pyDatalog.program()
    def running_sum(): 
        # running_sum
        (a_run_sum[X,Y] == running_sum(Z2, for_each=(X,Y2), order_by=Z2)) <= q(X, Y, Z) & q(X,Y2,Z2)
        assert ask(a_run_sum[X,Y]==Z) == set([('a', 'b', 3), ('a', 'c', 1), ('b', 'b', 4)])
        assert ask(a_run_sum[a,b]==3) == set([('a', 'b', 3)])
        assert ask(a_run_sum[a,b]==Y) == set([('a', 'b', 3)])
        assert ask(a_run_sum[a,X]==1) == set([('a', 'c', 1)])
        assert ask(a_run_sum[a,X]==Y) == set([('a', 'b', 3), ('a', 'c', 1)])
        assert ask(a_run_sum[X,Y]==4) == set([('b', 'b', 4)])
        assert ask(a_run_sum[a,y]==Y) == None

        (b_run_sum[X,Y] == running_sum(Z2, for_each=(X,Y2), order_by=-Z2)) <= q(X, Y, Z) & q(X,Y2,Z2)
        assert ask(b_run_sum[X,Y]==Z) == set([('a', 'b', 2), ('a', 'c', 3), ('b', 'b', 4)])
        assert ask(b_run_sum[a,b]==2) == set([('a', 'b', 2)])
        assert ask(b_run_sum[a,b]==Y) == set([('a', 'b', 2)])
        assert ask(b_run_sum[a,X]==3) == set([('a', 'c', 3)])
        assert ask(b_run_sum[a,X]==Y) == set([('a', 'b', 2), ('a', 'c', 3)])
        assert ask(b_run_sum[X,Y]==4) == set([('b', 'b', 4)])
        assert ask(b_run_sum[a,y]==Y) == None

    """ simple in-line queries                                        """
    X = pyDatalog.Variable()
    assert ((X==1) >= X) == 1
    assert ((X==1) & (X!=2) >= X) == 1
    assert set(X._in((1,2))) == set([(1,),(2,)])
    assert ((X==1) & (X._in ((1,2)))) == [(1,)]

    """ interface with python classes                                        """

    class A(pyDatalog.Mixin):
        def __init__(self, b):
            super(A, self).__init__()
            self.b = b
        def __repr__(self):
            return self.b
        @pyDatalog.program() # indicates that the following method contains pyDatalog clauses
        def _():
            (A.c[X]==N) <= (A.b[X]==N)
            (A.len[X]==len(N)) <= (A.b[X]==N)
        @classmethod
        def _pyD_x1(cls, X):
            if X.is_const() and X.id.b == 'za':
                yield (X.id,)
            else:
                for X in pyDatalog.metaMixin.__refs__[cls]:
                    if X.b == 'za':
                        yield (X,)
            
    a = A('a')
    b = A('b')
    assert a.c == 'a'
    X, Y = pyDatalog.variables(2)
    assert (A.c[X]=='a') == [(a,)]
    assert (A.c[X]=='a')[0] == (a,)
    assert list(X.data) == [a]
    assert X.v() == a
    assert ((A.c[a]==X) >= X) == 'a'
    assert ((A.c[a]==X) & (A.c[a]==X) >= X) == 'a'
    assert ((A.c[a]==X) & (A.c[b]==X) >= X) == None
    (A.c[X]=='b') & (A.b[X]=='a')
    assert list(X.data) == []
    (A.c[X]=='a') & (A.b[X]=='a')
    assert list(X.data) == [a]
    result = (A.c[X]=='a') & (A.b[X]=='a')
    assert result == [(a,)]
    assert (A.c[a] == 'a') == [()]
    assert (A.b[a] == 'a') == [()]
    assert (A.c[a]=='a') & (A.b[a]=='a') == [()]
    assert (A.b[a]=='f') == []
    assert ((A.c[a]=='a') & (A.b[a]=='f')) == []
    
    """ filters on python classes                                        """
    assert (A.b[X]!=Y) == [(a, None), (b, None)]
    assert (A.b[X]!='a') == [(b,)]
    assert (A.b[X]!='z') == [(a,), (b,)]
    assert (A.b[a]!='a') == []
    assert list(A.b[b]!='a') == [()]
    assert ((A.b[b]!='a') & (A.b[b]!='z')) == [()]

    assert (A.b[X]<Y) == [(a, None), (b, None)]
    assert (A.b[X]<'a') == []
    assert (A.b[X]<'z') == [(a,), (b,)]
    assert (A.b[a]<'b') == [()]
    assert (A.b[b]<'a') == []
    assert ((A.b[b]<'z') & (A.b[b]!='z')) == [()]

    assert (A.b[X]<='a') == [(a,)]
    assert (A.b[X]<='z') == [(a,), (b,)]
    assert (A.b[a]<='b') == [()]
    assert (A.b[b]<='a') == []
    assert ((A.b[b]<='z') & (A.b[b]!='z')) == [()]

    assert (A.b[X]>'a') == [(b,)]
    assert (A.b[X]>='a') == [(a,), (b,)]

    assert (A.c[X]<='a') == [(a,)]
    assert (A.c[X]<='a'+'') == [(a,)]

    assert (A.c[X]._in(('a',))) == [(a,)]
    assert (A.c[X]._in(('a',)+('z',))) == [(a,)]
    assert ((Y==('a',)) & (A.c[X]._in(Y))) == [(('a',), a)] # TODO make ' in ' work
    
    assert ((Y==('a',)) & (A.c[X]._in(Y+('z',)))) == [(('a',), a)] # TODO make ' in ' work
    assert (A.c[X]._in(('z',))) == []

    # more complex queries
    assert ((Y=='a') & (A.b[X]!=Y)) == [('a', b)] # order of appearance of the variables !
    
    assert (A.len[X]==Y) == [(b, 1), (a, 1)]
    assert (A.len[a]==Y) == [(1,)]

    """ subclass                                              """

    class Z(A):
        def __init__(self, z):
            super(Z, self).__init__(z+'a')
            self.z = z
        def __repr__(self):
            return self.z
        @pyDatalog.program() # indicates that the following method contains pyDatalog clauses
        def _():
            (Z.w[X]==N) <= (Z.z[X]!=N)
        @classmethod
        def _pyD_query(cls, pred_name, args):
            if pred_name == 'Z.pred':
                if args[0].is_const() and args[0].id.b != 'za':
                    yield (args[0].id,)
                else:
                    for X in pyDatalog.metaMixin.__refs__[cls]:
                        if X.b != 'za':
                            yield (X,)
            else:
                raise AttributeError
    
    z = Z('z')
    assert z.z == 'z'
    assert (Z.z[X]=='z') == [(z,)]
    assert ((Z.z[X]=='z') & (Z.z[X]>'a')) == [(z,)]
    assert list(X.data) == [z]
    try:
        a.z == 'z'
    except Exception as e:
        e_message = e.message if hasattr(e, 'message') else e.args[0]
        if e_message != "Predicate without definition (or error in resolver): A.z[1]==/2":
            print(e_message)
    else:
        assert False
    
    try:
        (Z.z[a] == 'z') == None
    except Exception as e:
        e_message = e.message if hasattr(e, 'message') else e.args[0]
        if e_message != "Object is incompatible with the class that is queried.":
            print(e_message)
    else:
        assert False

    assert (Z.b[X]==Y) == [(z, 'za')]
    assert (Z.c[X]==Y) == [(z, 'za')]
    assert ((Z.c[X]==Y) & (Z.c[X]>'a')) == [(z, 'za')]
    assert (Z.c[X]>'a') == [(z,)]
    assert ((Z.c[X]>'a') & (A.c[X]=='za')) == [(z,)]
    assert (A.c[X]=='za') == [(z,)]
    assert (A.c[z]=='za') == [()]
    assert (z.b) == 'za'
    assert (z.c) == 'za'
    
    w = Z('w')
    w = Z('w') # duplicated to test __refs__[cls]
    assert(Z.x(X)) == [(z,)]
    assert not (~Z.x(z))
    assert ~Z.x(w)
    assert ~ (Z.z[w]=='z')
    assert(Z.pred(X)) == [(w,)] # not duplicated !
    assert(Z.pred(X) & ~ (Z.z[X]>='z')) == [(w,)]
    assert(Z.x(X) & ~(Z.pred(X))) == [(z,)]

    assert (Z.len[X]==Y) == [(w, 1), (z, 1)]
    assert (Z.len[z]==Y) == [(1,)]
    
    # TODO print (A.b[w]==Y)
            
    """ python resolvers                                              """
    
    @pyDatalog.predicate()
    def p(X,Y):
        yield (1,2)
        yield (2,3)
    
    assert pyDatalog.ask('p(X,Y)') == set([(1, 2), (2, 3)])
    assert pyDatalog.ask('p(1,Y)') == set([(1, 2)])
    assert pyDatalog.ask('p(1,2)') == set([(1, 2)])
    
    """ error detection                                              """
    
    @pyDatalog.program()
    def _(): 
        pass
    error = False
    try:
        _()
    except: error = True
    assert error

    def assert_error(code, message='^$'):
        _error = False
        try:
            pyDatalog.load(code)
        except Exception as e:
            e_message = e.message if hasattr(e, 'message') else e.args[0] # python 2 and 3
            if not re.match(message, e_message):
                print(e_message) 
            _error = True
        assert _error
        
    def assert_ask(code, message='^$'):
        _error = False
        try:
            pyDatalog.ask(code)
        except Exception as e: 
            e_message = e.message if hasattr(e, 'message') else e.args[0]
            if not re.match(message, e_message):
                print(e_message) 
            _error = True
        assert _error
        
    assert_error('ask(z(a),True)', 'Too many arguments for ask \!')
    assert_error('ask(z(a))', 'Predicate without definition \(or error in resolver\): z/1')
    assert_error("+ farmer(farmer(moshe))", "Syntax error: Literals cannot have a literal as argument : farmer\[\]")
    assert_error("+ manager[Mary]==John", "Left-hand side of equality must be a symbol or function, not an expression.")
    assert_error("manager[X]==Y <= (X==Y)", "Syntax error: please verify parenthesis around \(in\)equalities")
    assert_error("p(X) <= (Y==2)", "Can't create clause")
    assert_error("p(X) <= X==1 & X==2", "Syntax error: please verify parenthesis around \(in\)equalities")
    assert_error("p(X) <= (manager[X]== min(X))", "Error: argument missing in aggregate")
    assert_error("p(X) <= (manager[X]== max(X, order_by=X))", "Aggregation cannot appear in the body of a clause")
    assert_error("q(min(X, order_by=X)) <= p(X)", "Syntax error: Incorrect use of aggregation\.")
    assert_error("manager[X]== min(X, order_by=X) <= manager(X)", "Syntax error: please verify parenthesis around \(in\)equalities")
    assert_error("(manager[X]== min(X, order_by=X+2)) <= manager(X)", "order_by argument of aggregate must be variable\(s\), not expression\(s\).")
    assert_error("ask(X<1)", 'Error: left hand side of comparison must be bound: =X<1/1')
    assert_error("ask(X<Y)", 'Error: left hand side of comparison must be bound: =X<Y/2')
    assert_error("ask(1<Y)", 'Error: left hand side of comparison must be bound: =Y>1/1')
    assert_error("ask( (A.c[X]==Y) & (Z.c[X]==Y))", "TypeError: First argument of Z.c\[1\]==\('.','.'\) must be a Z, not a A ")
    assert_ask("A.u[X]==Y", "Predicate without definition \(or error in resolver\): A.u\[1\]==/2")
    assert_ask("A.u[X,Y]==Z", "Predicate without definition \(or error in resolver\): A.u\[2\]==/3")
    assert_error('(a_sum[X] == sum(Y, key=Y)) <= p(X, Z, Y)', "Error: Duplicate definition of aggregate function.")
    assert_error('(two(X)==Z) <= (Z==X+(lambda X: X))', 'Syntax error near equality: consider using brackets. two\(X\)')
    assert_error('p(X) <= sum(X, key=X)', 'Invalid body for clause')
    assert_error('ask(- manager[X]==1)', "Left-hand side of equality must be a symbol or function, not an expression.")
    assert_error("p(X) <= (X=={})", "unhashable type: 'dict'")

    """ SQL Alchemy                    """

    from sqlalchemy import create_engine
    from sqlalchemy import Column, Integer, String, ForeignKey
    from sqlalchemy.ext.declarative import declarative_base
    from sqlalchemy.orm import sessionmaker, relationship
    
    engine = create_engine('sqlite:///:memory:', echo=False) # create database in memory
    Session = sessionmaker(bind=engine)
    session = Session()

    Base = declarative_base(cls=pyDatalog.Mixin, metaclass=pyDatalog.sqlMetaMixin)
    Base.session = session
        
    class Employee(Base): # --> Employee inherits from the Base class
        __tablename__ = 'employee'
        
        name = Column(String, primary_key=True)
        manager_name = Column(String, ForeignKey('employee.name'))
        salary = Column(Integer)
        
        def __init__(self, name, manager_name, salary):
            super(Employee, self).__init__()
            self.name = name
            self.manager_name = manager_name # direct manager of the employee, or None
            self.salary = salary # monthly salary of the employee
        def __repr__(self): # specifies how to display the employee
            return "Employee: %s" % self.name
    
        @pyDatalog.program() # --> the following function contains pyDatalog clauses
        def Employee():
            (Employee.manager[X]==Y) <= (Employee.manager_name[X]==Z) & (Z==Employee.name[Y])
            # the salary class of employee X is computed as a function of his/her salary
            # this statement is a logic equality, not an assignment !
            Employee.salary_class[X] = Employee.salary[X]//1000
            
            # all the indirect managers of employee X are derived from his manager, recursively
            Employee.indirect_manager(X,Y) <= (Employee.manager[X]==Y) & (Y != None)
            Employee.indirect_manager(X,Y) <= (Employee.manager[X]==Z) & Employee.indirect_manager(Z,Y) & (Y != None)
            
            # count the number of reports of X
            (Employee.report_count[X] == len(Y)) <= Employee.indirect_manager(Y,X)
            
            Employee.p(X,Y) <= (Y <= Employee.salary[X] + 1)
            

    Base.metadata.create_all(engine) 
    
    John = Employee('John', None, 6800)
    Mary = Employee('Mary', 'John', 6300)
    Sam = Employee('Sam', 'Mary', 5900)
    
    session.add(John)
    session.add(Mary)
    session.add(Sam)
    session.commit()
    
    assert (John.salary_class ==6) 
    
    X = pyDatalog.Variable()
    result = (Employee.salary[X] == 6300) # notice the similarity to a pyDatalog query
    assert result == [(Mary,), ]
    assert (X._value() == [Mary,]) # prints [Employee: Mary]
    assert (X.v() == Mary) # prints Employee:Mary

    result = (Employee.indirect_manager(Mary, X))
    assert result == [(John,), ]
    assert (X.v() == John) # prints [Employee: John]
    
    Mary.salary_class = ((Employee.salary_class[Mary]==X) >= X)
    Mary.salary = 10000
    assert Mary.salary_class != ((Employee.salary_class[Mary]==X) >= X)

    X, Y, N = pyDatalog.variables(3)
    result = (Employee.salary[X]==6800) & (Employee.name[X]==N)
    assert result == [(John,'John'), ]
    assert N.v() == 'John'
    
    result = (Employee.salary[X]==Employee.salary[X])
    assert result == [(John,), (Mary,), (Sam,)]
    
    result = (Employee.p(X,1))
    assert result == [(John,), (Mary,), (Sam,)]
    
    result = (Employee.salary[X]<Employee.salary[X]+1)
    assert result == [(John,), (Mary,), (Sam,)]
    
    result = (Employee.salary[John]==N) & Employee.p(John, N)
    assert result == [(6800,)]
    result = (Employee.salary[X]==6800) & (Employee.salary[X]==N) & Employee.p(X, N) 
    assert result == [(John, 6800)]

    """
예제 #13
0
 def tearDown(self):
     from pyDatalog import pyDatalog
     pyDatalog.clear()
예제 #14
0
def get_scores(hicno,
               sex,
               dob,
               month_of_eligibility,
               year_of_eligibility,
               RAF_type=None,
               lob=None,
               orec=0,
               medicaid=True,
               codes=[]):
    try:

        global model

        RAF_type = RAF_type.upper()

        combined_df = []

        combined_score = 0

        for params in select_model(year_of_eligibility, RAF_type, lob):
            print(params)

            try:
                _, weight, model_name, coefficients_file_path, _payment_year = params

                model = importlib.import_module(
                    "models.{}.hcc".format(model_name))

            except:
                print("invalid RAF_type: {}".format(RAF_type))
                print(traceback.format_exc())
                return

            try:
                coefficients_df = pd.read_csv(
                    coefficients_file_path,
                    names=['raf_type', 'coeff', 'contribution_category'],
                    float_precision='high')

                coefficients_df['raf_type'] = coefficients_df[
                    'raf_type'].str.upper()

                # print(coefficients_df.head())

            except:

                print('coefficients file not found : {}'.format(
                    coefficients_file_path))

            def get_coeff(x):
                # print(x)
                temp = coefficients_df[coefficients_df['raf_type'] ==
                                       x].values[0]

                return temp[2], temp[1]

            formatted_dob = format_date(dob)

            age_upto = "-".join(
                [year_of_eligibility, month_of_eligibility, '01'])

            # print(age_upto)

            formatted_age_upto = format_date(age_upto)

            formatted_sex = sex_lookup[sex.lower()]

            if orec not in [0, 1, 2, 3]:
                print("invaild original_reason_entitlement : {}".format(orec))
                return

            else:
                temp_orec = orec

                person = model.Beneficiary(
                    hicno=hicno,
                    sex=formatted_sex,
                    dob=formatted_dob,
                    age_upto=formatted_age_upto,
                    original_reason_entitlement=temp_orec,
                    medicaid=medicaid,
                )

            for code in codes:

                add_diagnosis_code(person, code)

            pyDatalog.create_terms("Vars, ScoreVar")

            temp_raf_type = raf_type_lookup[RAF_type][0]

            hcc_reg_variables_list = model.regvars(person, temp_raf_type,
                                                   model.Vars)

            t = raf_type_lookup[RAF_type][1]

            out_df = {}

            out_df['RAF_TYPE'] = RAF_type
            out_df['raf_contribution'] = {
                'Demographic': [],
                'Clinical': [],
                'Entitlement Class': []
            }

            score = 0
            if len(hcc_reg_variables_list) > 0:

                condition_categories = hcc_reg_variables_list[0][0].split(',')

                for temp_category in condition_categories:

                    formatted_category = "{}_{}".format(
                        RAF_type, temp_category.upper())

                    category, temp_coeff = get_coeff(formatted_category)

                    out_df['raf_contribution'][category].append(
                        {temp_category: temp_coeff})

                    score += temp_coeff

                score = float(format(score, '0.3f'))

                combined_score += score * weight

                combined_score = float(format(combined_score, '0.3f'))

            combined_df.append({
                'Model': model_name.split('_')[0],
                'Payment_Year': _payment_year,
                'RAF_TYPE': out_df['RAF_TYPE'],
                'Raf_Contribution': out_df['raf_contribution'],
                'Score': score
            })

            pyDatalog.clear()

        final_df = {'models': combined_df, 'final_score': combined_score}

        return final_df

    except:
        print(traceback.format_exc())
        return None
pyDatalog.create_terms("isParent, isChild, isSibling, X, Y, Z, c"
                       )  # Datalog-терми (змінні з великої букви)
+isParent("Ivan", "Petro")  # додати факт (isParent - предикат)
+isParent("Ivan",
          "Stepan")  # предикати можуть бути кирилицею: globals()['назва']
# правила логічного виведення ("<=" - "якщо, то"):
isChild(X, Y) <= isParent(Y, X)  # якщо Y батько X, то X дитина Y
isSibling(X, Y) <= isParent(Z, X) & isParent(Z, Y) & ~(X == Y)
# запити:
print isChild("Petro", X).data  # знайти батька Петра
print isChild(X, "Ivan").data  # знайти усіх дітей Івана
print isSibling(X, Y).data  # знайти усіх братів
(c[X] == len_(Y)) <= (isParent(X, Y))
print(c[X] == Y).data  # знайти кількість дітей батька X

pyDatalog.clear()  # очистити базу даних
pyDatalog.create_terms("abs, f, g")  # abs - вбудована функція
print((X == [1, 2, -3]) & (Y == abs(X[2]) + 1)).data  # знайти X,Y
print(X.in_(range(5)) & Y.in_(range(5)) & (Z == X + Y) &
      (Z < 2)).data  # знайти X,Y
f["Ivan"] = 2  #  факт (f - предикат)
f["Petro"] = 0
#+(f['Petro'] == 0) # або
print((f[X] == Y) & (Y > 0)).data  # знайти X,Y
del f["Ivan"]  # видалити
(g[X] == 3) <= (X == "Ivan")
print((g[X] == Y)).data  # знайти X,Y
"""
    [(u'Ivan',)]
    [(u'Petro',), (u'Stepan',)]
    [(u'Petro', u'Stepan'), (u'Stepan', u'Petro')]
예제 #16
0
파일: kmer.py 프로젝트: yjzhang/pyDatalog
import sys
import time
import random
from algorithms import Alignment
from pyDatalog import pyDatalog

# create some python functions as helpers, because pyDatalog allows this

# string length function
def strlen(x):
    if isinstance(x,basestring):
        return len(x)
    return 0

pyDatalog.clear()
pyDatalog.create_terms('seedsa,seedsb,r,s,strlen,X,Y,Z,res,A,B,SL,N')

def build(a,b,k):
    # creates table of (Z,X) pairs where Z is original sequence and X is seed (kmer) of length SL
    + r(a)
    seedsa(Z,X) <= r(Z) & (SL==k) & (N.in_(range_(strlen(Z)))) & (X==Z[N:N+SL]) & (strlen(X)==SL)
    #print(seedsa(Z,X))
    + s(b)
    seedsb(Z,X) <= s(Z) & (SL==k) & (N.in_(range_(strlen(Z)))) & (X==Z[N:N+SL]) & (strlen(X)==SL)
    #print(seedsb(Z,X))

def ask():
    # seeds query function
    res(X) <= seedsa(A,Y) & seedsb(B,Z) & (Z==Y) & (X==Z)
    #print(res(X))
    print(len_(res(X))==Y)
예제 #17
0
 def tearDown(self):
     from pyDatalog import pyDatalog
     pyDatalog.clear()
예제 #18
0
 def close(self):
     pyDatalog.clear()
 def close(self):
     pyDatalog.clear()
예제 #20
0
파일: test.py 프로젝트: bellomarini/DyDiPy
def test():

    # test of expressions
    pyDatalog.load("""
        + p(a) # p is a proposition
    """)
    assert pyDatalog.ask('p(a)') == set([('a', )])

    pyDatalog.assert_fact('p', 'a', 'b')
    assert pyDatalog.ask('p(a, "b")') == set([('a', 'b')])
    pyDatalog.retract_fact('p', 'a', 'b')
    assert pyDatalog.ask('p(a, "b")') == None
    """unary facts                                                            """
    @pyDatalog.program()
    def unary():
        +z()
        assert ask(z()) == set([()])

        +p(a)
        # check that unary queries work
        assert ask(p(a)) == set([('a', )])
        assert ask(p(X)) == set([('a', )])
        assert ask(p(Y)) == set([('a', )])
        assert ask(p(_X)) == set([('a', )])
        assert ask(p(b)) == None
        assert ask(p(a) & p(b)) == None

        +p(b)
        assert ask(p(X), _fast=True) == set([('a', ), ('b', )])

        +p(b)  # facts are unique
        assert ask(p(X)) == set([('a', ), ('b', )])

        -p(b)  # retract a unary fact
        assert ask(p(X)) == set([('a', )])

        -p(a)
        assert ask(p(X)) == None
        +p(a)

        # strings and integers
        +p('c')
        assert ask(p(c)) == set([('c', )])

        +p(1)
        assert ask(p(1)) == set([(1, )])

        +n(None)
        assert ask(n(X)) == set([(None, )])
        assert ask(n(None)) == set([(None, )])

        # spaces and uppercase in strings
        +farmer('Moshe dayan')
        +farmer('omar')
        assert ask(farmer(X)) == set([('Moshe dayan', ), ('omar', )])

    # execute queries in a python program
    moshe_is_a_farmer = pyDatalog.ask("farmer('Moshe dayan')")
    assert moshe_is_a_farmer == set([('Moshe dayan', )])
    """ binary facts                                                         """

    @pyDatalog.program()
    def binary():
        +q(a, b)
        assert ask(q(a, b)) == set([('a', 'b')])
        assert ask(q(X, b)) == set([('a', 'b')])
        assert ask(q(a, Y)) == set([('a', 'b')])
        assert ask(q(a, c)) == None
        assert ask(q(X, Y)) == set([('a', 'b')])

        +q(a, c)
        assert ask(q(a, Y)) == set([('a', 'b'), ('a', 'c')])

        -q(a, c)
        assert ask(q(a, Y)) == set([('a', 'b')])

        assert ask(q(X, X)) == None
        +q(a, a)
        assert ask(q(X, X)) == set([('a', 'a')])
        -q(a, a)

    """ (in)equality                                             """

    @pyDatalog.program()
    def equality():
        assert ask(X == 1) == set([(1, )])
        assert ask(X == Y) == None
        assert ask(X == Y + 1) == None
        assert ask((X == 1) & (Y == 1) & (X == Y)) == set([(1, 1)])
        assert ask((X == 1) & (Y == 2) & (X == Y - 1)) == set([(1, 2)])
        #assert ask((X==1) & (Y==2) & (X+2==Y+1)) == set([(1,2)])
        assert ask((X == 2) & (Y == X / 2)) == set([(2, 1)])
        assert ask((X == 2) & (Y == X // 2)) == set([(2, 1)])

        assert ask((X == 1) & (Y == 1 + X)) == set([(1, 2)])
        assert ask((X == 1) & (Y == 1 - X)) == set([(1, 0)])
        assert ask((X == 1) & (Y == 2 * X)) == set([(1, 2)])
        assert ask((X == 2) & (Y == 2 / X)) == set([(2, 1)])
        assert ask((X == 2) & (Y == 2 // X)) == set([(2, 1)])

    """ Conjunctive queries                                             """

    @pyDatalog.program()
    def conjuctive():
        assert ask(q(X, Y) & p(X)) == set([('a', 'b')])

        assert ask(p(X) & p(a)) == set([('a', ), ('c', ), (1, )])
        assert ask(p(X) & p(Y) & (X == Y)) == set([('a', 'a'), ('c', 'c'),
                                                   (1, 1)])
        assert ask(p(X) & p(Y) & (X == Y) & (Y == a)) == set([('a', 'a')])

        assert ask(q(X, Y)) == set([('a', 'b')])
        assert ask(q(X, Y) & p(X)) == set([('a', 'b')])

    @pyDatalog.program()
    def equality2():
        assert ask((X == 1) & (X < X + 1)) == set([(1, )])
        assert ask((X == 1) & (Y == X)) == set([(1, 1)])
        assert ask((X == 1) & (Y == X + 1)) == set([(1, 2)])
        assert ask((X == 1) & (Y == X + 1) & (X < Y)) == set([(1, 2)])
        assert ask((X == 1) & (X < 1)) == None
        assert ask((X == 1) & (X <= 1)) == set([(1, )])
        assert ask((X == 1) & (X > 1)) == None
        assert ask((X == 1) & (X >= 1)) == set([(1, )])
        #       assert ask(X==(1,2)) == set([((1,2), (1,2))])
        assert ask(X in (1, )) == set([(1, )])
        assert ask((X == 1) & (X not in (2, ))) == set([(1, )])
        assert ask((X == 1) & ~(X in (2, ))) == set([(1, )])
        assert ask((X == 1) & (X not in (1, ))) == None
        assert ask((X == 1) & ~(X in (1, ))) == None

    @pyDatalog.program()
    def equality3():
        # equality (must be between parenthesis):
        s(X) <= (X == a)
        assert ask(s(X)) == set([('a', )])
        s(X) <= (X == 1)
        assert ask(s(X)) == set([(1, ), ('a', )])

        s(X, Y) <= p(X) & (X == Y)
        assert ask(s(a, a)) == set([('a', 'a')])
        assert ask(s(a, b)) == None
        assert ask(s(X, a)) == set([('a', 'a')])
        assert ask(s(X, Y)) == set([('a', 'a'), ('c', 'c'), (1, 1)])

    assert pyDatalog.ask('p(a)') == set([('a', )])
    """ clauses                                                         """

    @pyDatalog.program()
    def clauses():

        p2(X) <= p(X)
        assert ask(p2(a)) == set([('a', )])
        p2(X) <= p(X)

        r(X, Y) <= p(X) & p(Y)
        assert ask(r(a, a)) == set([('a', 'a')])
        assert ask(r(a, c)) == set([('a', 'c')])
        r(X, b) <= p(X)
        assert ask(r(a, b)) == set([('a', 'b')])

        -(r(X, b) <= p(X))
        assert ask(r(a, b)) == None

        # TODO more tests

        # integer variable
        for i in range(10):
            +successor(i + 1, i)
        assert ask(successor(2, 1)) == set([(2, 1)])

        # built-in
        assert abs(-3) == 3
        assert math.sin(3) == math.sin(3)

    """ in                                                         """

    pyDatalog.assert_fact('is_list', (1, 2))

    @pyDatalog.program()
    def _in():
        assert ((X == 1) & (X in (1, 2))) == [(1, )]
        _in(X) <= (X in [1, 2])
        assert ask(_in(1)) == set([(1, )])
        assert ask(_in(9)) == None
        assert ask(_in(X)) == set([(1, ), (2, )])

        _in2(X) <= is_list(Y) & (X in Y)
        assert ask(_in2(X)) == set([(1, ), (2, )])

        assert ask((Y == (1, 2)) & (X == 1) & (X in Y)) == set([((1, 2), 1)])
        assert ask((Y == (1, 2)) & (X == 1) & (X in Y + (3, ))) == set([
            ((1, 2), 1)
        ])

    """ recursion                                                         """

    @pyDatalog.program()
    def recursion():
        +even(0)
        even(N) <= successor(N, N1) & odd(N1)
        odd(N) <= ~even(N)
        assert ask(even(0)) == set([(0, )])
        assert ask(even(X)) == set([(4, ), (10, ), (6, ), (0, ), (2, ), (8, )])
        assert ask(even(10)) == set([(10, )])
        assert ask(odd(1)) == set([(1, )])
        assert ask(odd(5)) == set([(5, )])
        assert ask(even(5)) == None

    """ recursion with expressions                                         """
    # reset the engine
    pyDatalog.clear()

    @pyDatalog.program()
    def recursive_expression():

        predecessor(X, Y) <= (X == Y - 1)
        assert ask(predecessor(X, 11)) == set([(10, 11)])

        p(X, Z) <= (Y == Z - 1) & (X == Y - 1)
        assert ask(p(X, 11)) == set([(9, 11)])

        # odd and even
        +even(0)
        even(N) <= (N > 0) & odd(N - 1)
        assert ask(even(0)) == set([(0, )])
        odd(N) <= (N > 0) & ~even(N)
        assert ask(even(0)) == set([(0, )])
        assert ask(odd(1)) == set([(1, )])
        assert ask(odd(5)) == set([(5, )])
        assert ask(even(5)) == None
        assert ask((X == 3) & odd(X + 2)) == set([(3, )])

    # Factorial
    pyDatalog.clear()

    @pyDatalog.program()
    def factorial():
        #        (factorial[N] == F) <= (N < 1) & (F == -factorial[-N])
        #        + (factorial[1]==1)
        #        (factorial[N] == F) <= (N > 1) & (F == N*factorial[N-1])
        #        assert ask(factorial[1] == F) == set([(1, 1)])
        #        assert ask(factorial[4] == F) == set([(4, 24)])
        #        assert ask(factorial[-4] == F) == set([(-4, -24)])
        pass

    # Fibonacci
    pyDatalog.clear()

    @pyDatalog.program()
    def fibonacci():
        (fibonacci[N] == F) <= (N == 0) & (F == 0)
        (fibonacci[N] == F) <= (N == 1) & (F == 1)
        (fibonacci[N]
         == F) <= (N > 1) & (F == fibonacci[N - 1] + fibonacci[N - 2])
        assert ask(fibonacci[1] == F) == set([(1, 1)])
        assert ask(fibonacci[4] == F) == set([(4, 3)])
        assert ask(fibonacci[18] == F) == set([(18, 2584)])

    # string manipulation
    @pyDatalog.program()
    def _lambda():
        split(X, Y, Z) <= (X == Y + '-' + Z)
        assert ask(split(X, 'a', 'b')) == set([('a-b', 'a', 'b')])
        split(X, Y, Z) <= (Y == (lambda X: X.split('-')[0])) & (Z == (
            lambda X: X.split('-')[1]))
        assert ask(split('a-b', Y, Z)) == set([('a-b', 'a', 'b')])
        assert ask(split(X, 'a', 'b')) == set([('a-b', 'a', 'b')])

        (two[X] == Z) <= (Z == X + (lambda X: X))
        assert ask(two['A'] == Y) == set([('A', 'AA')])

    """ negation                                                     """

    @pyDatalog.program()
    def _negation():
        +p(a, b)
        assert ask(~p(X, b)) == None
        assert ask(~p(X, c)) == set([('X', 'c')])

    pyDatalog.load("""
        + even(0)
        even(N) <= (N > 0) & (N1==N-1) & odd(N1)
        odd(N) <= (N2==N+2) & ~ even(N) & (N2>0)
    """)
    assert pyDatalog.ask('~ odd(7)', _fast=True) == None
    assert pyDatalog.ask('~ odd(2)', _fast=True) == set([(2, )])
    assert pyDatalog.ask('odd(3)', _fast=True) == set([(3, )])
    assert pyDatalog.ask('odd(3)') == set([(3, )])
    assert pyDatalog.ask('odd(5)', _fast=True) == set([(5, )])
    assert pyDatalog.ask('odd(5)') == set([(5, )])
    assert pyDatalog.ask('even(5)', _fast=True) == None
    assert pyDatalog.ask('even(5)') == None
    """ functions                                                         """
    pyDatalog.clear()

    @pyDatalog.program()
    def function():
        +(f[a] == b)
        assert ask(f[X] == Y) == set([('a', 'b')])
        assert ask(f[X] == b) == set([('a', 'b')
                                      ])  #TODO remove 'b' from result
        assert ask(f[a] == X) == set([('a', 'b')])
        assert ask(f[a] == b) == set([('a', 'b')])

        +(f[a] == c)
        assert ask(f[a] == X) == set([('a', 'c')])

        +(f[a] == a)
        assert ask(f[f[a]] == X) == set([('a', )])
        assert ask(f[X] == f[a]) == set([('a', )])
        assert ask(f[X] == f[a] + '') == set([('a', )])
        -(f[a] == a)
        assert ask(f[f[a]] == X) == None

        +(f[a] == None)
        assert (ask(f[a] == X)) == set([('a', None)])
        +(f[a] == (1, 2))
        assert (ask(f[a] == X)) == set([('a', (1, 2))])
        assert (ask(f[X] == (1, 2))) == set([('a', (1, 2))])

        +(f[a] == c)

        +(f2[a, x] == b)
        assert ask(f2[a, x] == b) == set([('a', 'x', 'b')])

        +(f2[a, x] == c)
        assert ask(f2[a, x] == X) == set([('a', 'x', 'c')])

        g[X] = f[X] + f[X]
        assert (ask(g[a] == X)) == set([('a', 'cc')])

        h(X, Y) <= (f[X] == Y)
        assert (ask(h(X, 'c'))) == set([('a', 'c')])
        assert (ask(h(X, Y))) == set([('a', 'c')])

    @pyDatalog.program()
    def function_comparison():
        assert ask(f[X] == Y) == set([('a', 'c')])
        assert ask(f[a] < 'd') == set([('c', )])
        assert ask(f[a] > 'a') == set([('c', )])
        assert ask(f[a] >= 'c') == set([('c', )])
        assert ask(f[a] > 'c') == None
        assert ask(f[a] <= 'c') == set([('c', )])
        assert ask(f[a] > 'c') == None
        assert ask(f[a] in [
            'c',
        ]) == set([('c', )])

        assert ask((f[X] == 'c') & (f[Y] == f[X])) == set([('a', 'a')])
        assert ask((f[X] == 'c') & (f[Y] == f[X] + '')) == set([('a', 'a')])
        assert ask((f[X] == 'c') & (f[Y] == (lambda X: 'c'))) == set([('a',
                                                                       'a')])

        assert ask(f[X] == Y + '') == None
        assert ask((Y == 'c') & (f[X] == Y + '')) == set([('c', 'a')])
        assert ask((Y == 'c') & (f[X] <= Y + '')) == set([('c', 'a')])
        assert ask((Y == 'c') & (f[X] < Y + '')) == None
        assert ask((Y == 'c') & (f[X] < 'd' + Y + '')) == set([('c', 'a')])
        assert ask((Y == ('a', 'c')) & (f[X] in Y)) == set([(('a', 'c'), 'a')])
        assert ask((Y == ('a', 'c')) & (f[X] in (Y + ('z', )))) == set([
            (('a', 'c'), 'a')
        ])

        assert ask(f[X] == f[X] + '') == set([('a', )])

    @pyDatalog.program()
    def function_negation():
        assert not (ask(~(f[a] < 'd')))
        assert not (ask(~(f[X] < 'd')))
        assert ask(~(f[a] in ('d', )))

    """ aggregates                                                         """

    pyDatalog.clear()

    @pyDatalog.program()
    def sum():
        +p(a, c, 1)
        +p(b, b, 4)
        +p(a, b, 1)

        assert (sum(1, 2)) == 3
        (a_sum[X] == sum(Y, key=Z)) <= p(X, Z, Y)
        assert ask(a_sum[X] == Y) == set([('a', 2), ('b', 4)])
        assert ask(a_sum[a] == X) == set([('a', 2)])
        assert ask(a_sum[a] == 2) == set([('a', 2)])
        assert ask(a_sum[X] == 4) == set([('b', 4)])
        assert ask(a_sum[c] == X) == None
        assert ask((a_sum[X] == 2) & (p(X, Z, Y))) == set([('a', 'c', 1),
                                                           ('a', 'b', 1)])

        (a_sum2[X] == sum(Y, for_each=X)) <= p(X, Z, Y)
        assert ask(a_sum2[a] == X) == set([('a', 1)])

        (a_sum3[X] == sum(Y, key=(X, Z))) <= p(X, Z, Y)
        assert ask(a_sum3[X] == Y) == set([('a', 2), ('b', 4)])
        assert ask(a_sum3[a] == X) == set([('a', 2)])

    @pyDatalog.program()
    def len():
        assert (len((1, 2))) == 2
        (a_len[X] == len(Z)) <= p(X, Z, Y)
        assert ask(a_len[X] == Y) == set([('a', 2), ('b', 1)])
        assert ask(a_len[a] == X) == set([('a', 2)])
        assert ask(a_len[X] == 1) == set([('b', 1)])
        assert ask(a_len[X] == 5) == None

        (a_lenY[X] == len(Y)) <= p(X, Z, Y)
        assert ask(a_lenY[a] == X) == set([('a', 1)])
        assert ask(a_lenY[c] == X) == None

        (a_len2[X, Y] == len(Z)) <= p(X, Y, Z)
        assert ask(a_len2[a, b] == X) == set([('a', 'b', 1)])
        assert ask(a_len2[a, X] == Y) == set([('a', 'b', 1), ('a', 'c', 1)])

        +q(a, c, 1)
        +q(a, b, 2)
        +q(b, b, 4)

    @pyDatalog.program()
    def concat():
        (a_concat[X] == concat(Y, key=Z, sep='+')) <= q(X, Y, Z)
        assert ask(a_concat[X] == Y) == set([('b', 'b'), ('a', 'c+b')])
        assert ask(a_concat[a] == 'c+b') == set([('a', 'c+b')])
        assert ask(a_concat[a] == X) == set([('a', 'c+b')])
        assert ask(a_concat[X] == b) == set([('b', 'b')])

        (a_concat2[X] == concat(Y, order_by=(Z, ), sep='+')) <= q(X, Y, Z)
        assert ask(a_concat2[a] == X) == set([('a', 'c+b')])

        (a_concat3[X] == concat(Y, key=(-Z, ), sep='-')) <= q(X, Y, Z)
        assert ask(a_concat3[a] == X) == set([('a', 'b-c')])

    @pyDatalog.program()
    def min():
        assert min(1, 2) == 1
        (a_min[X] == min(Y, key=Z)) <= q(X, Y, Z)
        assert ask(a_min[X] == Y) == set([('b', 'b'), ('a', 'c')])
        assert ask(a_min[a] == 'c') == set([('a', 'c')])
        assert ask(a_min[a] == X) == set([('a', 'c')])
        assert ask(a_min[X] == 'b') == set([('b', 'b')])

        (a_minD[X] == min(Y, order_by=-Z)) <= q(X, Y, Z)
        assert ask(a_minD[a] == X) == set([('a', 'b')])

        (a_min2[X, Y] == min(Z, key=(X, Y))) <= q(X, Y, Z)
        assert ask(a_min2[Y, b] == X) == set([('a', 'b', 2), ('b', 'b', 4)])
        assert ask(a_min2[Y, Y] == X) == set([('b', 'b', 4)]), "a_min2"

        (a_min3[Y] == min(Z, key=(-X, Z))) <= q(X, Y, Z)
        assert ask(a_min3[b] == Y) == set([('b', 4)]), "a_min3"

    @pyDatalog.program()
    def max():
        assert max(1, 2) == 2
        (a_max[X] == max(Y, key=-Z)) <= q(X, Y, Z)
        assert ask(a_max[a] == X) == set([('a', 'c')])

        (a_maxD[X] == max(Y, order_by=Z)) <= q(X, Y, Z)
        assert ask(a_maxD[a] == X) == set([('a', 'b')])

    @pyDatalog.program()
    def rank():
        (a_rank1[Z] == rank(for_each=Z, order_by=Z)) <= q(X, Y, Z)
        assert ask(a_rank1[X] == Y) == set([(1, 0), (2, 0), (4, 0)])
        assert ask(a_rank1[X] == 0) == set([(1, 0), (2, 0), (4, 0)])
        assert ask(a_rank1[1] == X) == set([(1, 0)])
        assert ask(a_rank1[1] == 0) == set([(1, 0)])
        assert ask(a_rank1[1] == 1) == None

        # rank
        (a_rank[X, Y] == rank(for_each=(X, Y2),
                              order_by=Z2)) <= q(X, Y, Z) & q(X, Y2, Z2)
        assert ask(a_rank[X, Y] == Z) == set([('a', 'b', 1), ('a', 'c', 0),
                                              ('b', 'b', 0)])
        assert ask(a_rank[a, b] == 1) == set([('a', 'b', 1)])
        assert ask(a_rank[a, b] == Y) == set([('a', 'b', 1)])
        assert ask(a_rank[a, X] == 0) == set([('a', 'c', 0)])
        assert ask(a_rank[a, X] == Y) == set([('a', 'b', 1), ('a', 'c', 0)])
        assert ask(a_rank[X, Y] == 1) == set([('a', 'b', 1)])
        assert ask(a_rank[a, y] == Y) == None
        # reversed
        (b_rank[X, Y] == rank(for_each=(X, Y2),
                              order_by=-Z2)) <= q(X, Y, Z) & q(X, Y2, Z2)
        assert ask(b_rank[X, Y] == Z) == set([('a', 'b', 0), ('a', 'c', 1),
                                              ('b', 'b', 0)])
        assert ask(b_rank[a, b] == 0) == set([('a', 'b', 0)])
        assert ask(b_rank[a, b] == Y) == set([('a', 'b', 0)])
        assert ask(b_rank[a, X] == 1) == set([('a', 'c', 1)])
        assert ask(b_rank[a, X] == Y) == set([('a', 'b', 0), ('a', 'c', 1)])
        assert ask(b_rank[X, Y] == 0) == set([('a', 'b', 0), ('b', 'b', 0)])
        assert ask(b_rank[a, y] == Y) == None

    @pyDatalog.program()
    def running_sum():
        # running_sum
        (a_run_sum[X, Y] == running_sum(
            Z2, for_each=(X, Y2), order_by=Z2)) <= q(X, Y, Z) & q(X, Y2, Z2)
        assert ask(a_run_sum[X, Y] == Z) == set([('a', 'b', 3), ('a', 'c', 1),
                                                 ('b', 'b', 4)])
        assert ask(a_run_sum[a, b] == 3) == set([('a', 'b', 3)])
        assert ask(a_run_sum[a, b] == Y) == set([('a', 'b', 3)])
        assert ask(a_run_sum[a, X] == 1) == set([('a', 'c', 1)])
        assert ask(a_run_sum[a, X] == Y) == set([('a', 'b', 3), ('a', 'c', 1)])
        assert ask(a_run_sum[X, Y] == 4) == set([('b', 'b', 4)])
        assert ask(a_run_sum[a, y] == Y) == None

        (b_run_sum[X, Y] == running_sum(
            Z2, for_each=(X, Y2), order_by=-Z2)) <= q(X, Y, Z) & q(X, Y2, Z2)
        assert ask(b_run_sum[X, Y] == Z) == set([('a', 'b', 2), ('a', 'c', 3),
                                                 ('b', 'b', 4)])
        assert ask(b_run_sum[a, b] == 2) == set([('a', 'b', 2)])
        assert ask(b_run_sum[a, b] == Y) == set([('a', 'b', 2)])
        assert ask(b_run_sum[a, X] == 3) == set([('a', 'c', 3)])
        assert ask(b_run_sum[a, X] == Y) == set([('a', 'b', 2), ('a', 'c', 3)])
        assert ask(b_run_sum[X, Y] == 4) == set([('b', 'b', 4)])
        assert ask(b_run_sum[a, y] == Y) == None

    """ simple in-line queries                                        """
    X = pyDatalog.Variable()
    assert ((X == 1) >= X) == 1
    assert ((X == 1) & (X != 2) >= X) == 1
    assert set(X._in((1, 2))) == set([(1, ), (2, )])
    assert ((X == 1) & (X._in((1, 2)))) == [(1, )]
    """ interface with python classes                                        """

    class A(pyDatalog.Mixin):
        def __init__(self, b):
            super(A, self).__init__()
            self.b = b

        def __repr__(self):
            return self.b

        @pyDatalog.program(
        )  # indicates that the following method contains pyDatalog clauses
        def _():
            (A.c[X] == N) <= (A.b[X] == N)
            (A.len[X] == len(N)) <= (A.b[X] == N)

        @classmethod
        def _pyD_x1(cls, X):
            if X.is_const() and X.id.b == 'za':
                yield (X.id, )
            else:
                for X in pyDatalog.metaMixin.__refs__[cls]:
                    if X.b == 'za':
                        yield (X, )

    a = A('a')
    b = A('b')
    assert a.c == 'a'
    X, Y = pyDatalog.variables(2)
    assert (A.c[X] == 'a') == [(a, )]
    assert (A.c[X] == 'a')[0] == (a, )
    assert list(X.data) == [a]
    assert X.v() == a
    assert ((A.c[a] == X) >= X) == 'a'
    assert ((A.c[a] == X) & (A.c[a] == X) >= X) == 'a'
    assert ((A.c[a] == X) & (A.c[b] == X) >= X) == None
    (A.c[X] == 'b') & (A.b[X] == 'a')
    assert list(X.data) == []
    (A.c[X] == 'a') & (A.b[X] == 'a')
    assert list(X.data) == [a]
    result = (A.c[X] == 'a') & (A.b[X] == 'a')
    assert result == [(a, )]
    assert (A.c[a] == 'a') == [()]
    assert (A.b[a] == 'a') == [()]
    assert (A.c[a] == 'a') & (A.b[a] == 'a') == [()]
    assert (A.b[a] == 'f') == []
    assert ((A.c[a] == 'a') & (A.b[a] == 'f')) == []
    """ filters on python classes                                        """
    assert (A.b[X] != Y) == [(a, None), (b, None)]
    assert (A.b[X] != 'a') == [(b, )]
    assert (A.b[X] != 'z') == [(a, ), (b, )]
    assert (A.b[a] != 'a') == []
    assert list(A.b[b] != 'a') == [()]
    assert ((A.b[b] != 'a') & (A.b[b] != 'z')) == [()]

    assert (A.b[X] < Y) == [(a, None), (b, None)]
    assert (A.b[X] < 'a') == []
    assert (A.b[X] < 'z') == [(a, ), (b, )]
    assert (A.b[a] < 'b') == [()]
    assert (A.b[b] < 'a') == []
    assert ((A.b[b] < 'z') & (A.b[b] != 'z')) == [()]

    assert (A.b[X] <= 'a') == [(a, )]
    assert (A.b[X] <= 'z') == [(a, ), (b, )]
    assert (A.b[a] <= 'b') == [()]
    assert (A.b[b] <= 'a') == []
    assert ((A.b[b] <= 'z') & (A.b[b] != 'z')) == [()]

    assert (A.b[X] > 'a') == [(b, )]
    assert (A.b[X] >= 'a') == [(a, ), (b, )]

    assert (A.c[X] <= 'a') == [(a, )]
    assert (A.c[X] <= 'a' + '') == [(a, )]

    assert (A.c[X]._in(('a', ))) == [(a, )]
    assert (A.c[X]._in(('a', ) + ('z', ))) == [(a, )]
    assert ((Y == ('a', )) & (A.c[X]._in(Y))) == [(('a', ), a)
                                                  ]  # TODO make ' in ' work

    assert ((Y == ('a', )) & (A.c[X]._in(Y + ('z', )))) == [
        (('a', ), a)
    ]  # TODO make ' in ' work
    assert (A.c[X]._in(('z', ))) == []

    # more complex queries
    assert ((Y == 'a') & (A.b[X] != Y)) == [
        ('a', b)
    ]  # order of appearance of the variables !

    assert (A.len[X] == Y) == [(b, 1), (a, 1)]
    assert (A.len[a] == Y) == [(1, )]
    """ subclass                                              """

    class Z(A):
        def __init__(self, z):
            super(Z, self).__init__(z + 'a')
            self.z = z

        def __repr__(self):
            return self.z

        @pyDatalog.program(
        )  # indicates that the following method contains pyDatalog clauses
        def _():
            (Z.w[X] == N) <= (Z.z[X] != N)

        @classmethod
        def _pyD_query(cls, pred_name, args):
            if pred_name == 'Z.pred':
                if args[0].is_const() and args[0].id.b != 'za':
                    yield (args[0].id, )
                else:
                    for X in pyDatalog.metaMixin.__refs__[cls]:
                        if X.b != 'za':
                            yield (X, )
            else:
                raise AttributeError

    z = Z('z')
    assert z.z == 'z'
    assert (Z.z[X] == 'z') == [(z, )]
    assert ((Z.z[X] == 'z') & (Z.z[X] > 'a')) == [(z, )]
    assert list(X.data) == [z]
    try:
        a.z == 'z'
    except Exception as e:
        e_message = e.message if hasattr(e, 'message') else e.args[0]
        if e_message != "Predicate without definition (or error in resolver): A.z[1]==/2":
            print(e_message)
    else:
        assert False

    try:
        (Z.z[a] == 'z') == None
    except Exception as e:
        e_message = e.message if hasattr(e, 'message') else e.args[0]
        if e_message != "Object is incompatible with the class that is queried.":
            print(e_message)
    else:
        assert False

    assert (Z.b[X] == Y) == [(z, 'za')]
    assert (Z.c[X] == Y) == [(z, 'za')]
    assert ((Z.c[X] == Y) & (Z.c[X] > 'a')) == [(z, 'za')]
    assert (Z.c[X] > 'a') == [(z, )]
    assert ((Z.c[X] > 'a') & (A.c[X] == 'za')) == [(z, )]
    assert (A.c[X] == 'za') == [(z, )]
    assert (A.c[z] == 'za') == [()]
    assert (z.b) == 'za'
    assert (z.c) == 'za'

    w = Z('w')
    w = Z('w')  # duplicated to test __refs__[cls]
    assert (Z.x(X)) == [(z, )]
    assert not (~Z.x(z))
    assert ~Z.x(w)
    assert ~(Z.z[w] == 'z')
    assert (Z.pred(X)) == [(w, )]  # not duplicated !
    assert (Z.pred(X) & ~(Z.z[X] >= 'z')) == [(w, )]
    assert (Z.x(X) & ~(Z.pred(X))) == [(z, )]

    assert (Z.len[X] == Y) == [(w, 1), (z, 1)]
    assert (Z.len[z] == Y) == [(1, )]

    # TODO print (A.b[w]==Y)
    """ python resolvers                                              """

    @pyDatalog.predicate()
    def p(X, Y):
        yield (1, 2)
        yield (2, 3)

    assert pyDatalog.ask('p(X,Y)') == set([(1, 2), (2, 3)])
    assert pyDatalog.ask('p(1,Y)') == set([(1, 2)])
    assert pyDatalog.ask('p(1,2)') == set([(1, 2)])
    """ error detection                                              """

    @pyDatalog.program()
    def _():
        pass

    error = False
    try:
        _()
    except:
        error = True
    assert error

    def assert_error(code, message='^$'):
        _error = False
        try:
            pyDatalog.load(code)
        except Exception as e:
            e_message = e.message if hasattr(
                e, 'message') else e.args[0]  # python 2 and 3
            if not re.match(message, e_message):
                print(e_message)
            _error = True
        assert _error

    def assert_ask(code, message='^$'):
        _error = False
        try:
            pyDatalog.ask(code)
        except Exception as e:
            e_message = e.message if hasattr(e, 'message') else e.args[0]
            if not re.match(message, e_message):
                print(e_message)
            _error = True
        assert _error

    assert_error('ask(z(a),True)', 'Too many arguments for ask \!')
    assert_error('ask(z(a))',
                 'Predicate without definition \(or error in resolver\): z/1')
    assert_error(
        "+ farmer(farmer(moshe))",
        "Syntax error: Literals cannot have a literal as argument : farmer\[\]"
    )
    assert_error(
        "+ manager[Mary]==John",
        "Left-hand side of equality must be a symbol or function, not an expression."
    )
    assert_error(
        "manager[X]==Y <= (X==Y)",
        "Syntax error: please verify parenthesis around \(in\)equalities")
    assert_error("p(X) <= (Y==2)", "Can't create clause")
    assert_error(
        "p(X) <= X==1 & X==2",
        "Syntax error: please verify parenthesis around \(in\)equalities")
    assert_error("p(X) <= (manager[X]== min(X))",
                 "Error: argument missing in aggregate")
    assert_error("p(X) <= (manager[X]== max(X, order_by=X))",
                 "Aggregation cannot appear in the body of a clause")
    assert_error("q(min(X, order_by=X)) <= p(X)",
                 "Syntax error: Incorrect use of aggregation\.")
    assert_error(
        "manager[X]== min(X, order_by=X) <= manager(X)",
        "Syntax error: please verify parenthesis around \(in\)equalities")
    assert_error(
        "(manager[X]== min(X, order_by=X+2)) <= manager(X)",
        "order_by argument of aggregate must be variable\(s\), not expression\(s\)."
    )
    assert_error("ask(X<1)",
                 'Error: left hand side of comparison must be bound: =X<1/1')
    assert_error("ask(X<Y)",
                 'Error: left hand side of comparison must be bound: =X<Y/2')
    assert_error("ask(1<Y)",
                 'Error: left hand side of comparison must be bound: =Y>1/1')
    assert_error(
        "ask( (A.c[X]==Y) & (Z.c[X]==Y))",
        "TypeError: First argument of Z.c\[1\]==\('.','.'\) must be a Z, not a A "
    )
    assert_ask(
        "A.u[X]==Y",
        "Predicate without definition \(or error in resolver\): A.u\[1\]==/2")
    assert_ask(
        "A.u[X,Y]==Z",
        "Predicate without definition \(or error in resolver\): A.u\[2\]==/3")
    assert_error('(a_sum[X] == sum(Y, key=Y)) <= p(X, Z, Y)',
                 "Error: Duplicate definition of aggregate function.")
    assert_error(
        '(two(X)==Z) <= (Z==X+(lambda X: X))',
        'Syntax error near equality: consider using brackets. two\(X\)')
    assert_error('p(X) <= sum(X, key=X)', 'Invalid body for clause')
    assert_error(
        'ask(- manager[X]==1)',
        "Left-hand side of equality must be a symbol or function, not an expression."
    )
    assert_error("p(X) <= (X=={})", "unhashable type: 'dict'")
    """ SQL Alchemy                    """

    from sqlalchemy import create_engine
    from sqlalchemy import Column, Integer, String, ForeignKey
    from sqlalchemy.ext.declarative import declarative_base
    from sqlalchemy.orm import sessionmaker, relationship

    engine = create_engine('sqlite:///:memory:',
                           echo=False)  # create database in memory
    Session = sessionmaker(bind=engine)
    session = Session()

    Base = declarative_base(cls=pyDatalog.Mixin,
                            metaclass=pyDatalog.sqlMetaMixin)
    Base.session = session

    class Employee(Base):  # --> Employee inherits from the Base class
        __tablename__ = 'employee'

        name = Column(String, primary_key=True)
        manager_name = Column(String, ForeignKey('employee.name'))
        salary = Column(Integer)

        def __init__(self, name, manager_name, salary):
            super(Employee, self).__init__()
            self.name = name
            self.manager_name = manager_name  # direct manager of the employee, or None
            self.salary = salary  # monthly salary of the employee

        def __repr__(self):  # specifies how to display the employee
            return "Employee: %s" % self.name

        @pyDatalog.program(
        )  # --> the following function contains pyDatalog clauses
        def Employee():
            (Employee.manager[X]
             == Y) <= (Employee.manager_name[X] == Z) & (Z == Employee.name[Y])
            # the salary class of employee X is computed as a function of his/her salary
            # this statement is a logic equality, not an assignment !
            Employee.salary_class[X] = Employee.salary[X] // 1000

            # all the indirect managers of employee X are derived from his manager, recursively
            Employee.indirect_manager(
                X, Y) <= (Employee.manager[X] == Y) & (Y != None)
            Employee.indirect_manager(
                X, Y) <= (Employee.manager[X]
                          == Z) & Employee.indirect_manager(Z, Y) & (Y != None)

            # count the number of reports of X
            (Employee.report_count[X] == len(Y)) <= Employee.indirect_manager(
                Y, X)

            Employee.p(X, Y) <= (Y <= Employee.salary[X] + 1)

    Base.metadata.create_all(engine)

    John = Employee('John', None, 6800)
    Mary = Employee('Mary', 'John', 6300)
    Sam = Employee('Sam', 'Mary', 5900)

    session.add(John)
    session.add(Mary)
    session.add(Sam)
    session.commit()

    assert (John.salary_class == 6)

    X = pyDatalog.Variable()
    result = (Employee.salary[X] == 6300
              )  # notice the similarity to a pyDatalog query
    assert result == [
        (Mary, ),
    ]
    assert (X._value() == [
        Mary,
    ])  # prints [Employee: Mary]
    assert (X.v() == Mary)  # prints Employee:Mary

    result = (Employee.indirect_manager(Mary, X))
    assert result == [
        (John, ),
    ]
    assert (X.v() == John)  # prints [Employee: John]

    Mary.salary_class = ((Employee.salary_class[Mary] == X) >= X)
    Mary.salary = 10000
    assert Mary.salary_class != ((Employee.salary_class[Mary] == X) >= X)

    X, Y, N = pyDatalog.variables(3)
    result = (Employee.salary[X] == 6800) & (Employee.name[X] == N)
    assert result == [
        (John, 'John'),
    ]
    assert N.v() == 'John'

    result = (Employee.salary[X] == Employee.salary[X])
    assert result == [(John, ), (Mary, ), (Sam, )]

    result = (Employee.p(X, 1))
    assert result == [(John, ), (Mary, ), (Sam, )]

    result = (Employee.salary[X] < Employee.salary[X] + 1)
    assert result == [(John, ), (Mary, ), (Sam, )]

    result = (Employee.salary[John] == N) & Employee.p(John, N)
    assert result == [(6800, )]
    result = (Employee.salary[X] == 6800) & (Employee.salary[X]
                                             == N) & Employee.p(X, N)
    assert result == [(John, 6800)]
    """
from pyDatalog import pyDatalog

pyDatalog.clear()

pyDatalog.create_terms('rectangle, isocele, equi, isoRect, P, TroiscotesPareil, angles60, DeuxcotesPareil, angleDroit, deuxAngles45, X')

equi(P) <= TroiscotesPareil(P) & angles60(P)
isocele(P) <= DeuxcotesPareil(P)
rectangle(P) <= angleDroit(P)
isoRect(P) <= angleDroit(P) & deuxAngles45(P)

pyDatalog.assert_fact('angleDroit', 'Triangle rectangle')
pyDatalog.assert_fact('angleDroit', 'Triangle rectangle isocèle')
pyDatalog.assert_fact('deuxAngles45', 'Triangle rectangle isocèle')

print(pyDatalog.ask('angleDroit(X)'))
print(pyDatalog.ask('deuxAngles45(X)'))
예제 #22
0
def _():

    calls = pa.read_csv('calls.csv', sep='\t', encoding='utf-8')
    texts = pa.read_csv('texts.csv', sep='\t', encoding='utf-8')
    suspect = 'Quandt Katarina'
    company_Board = ['Soltau Kristine', 'Eder Eva', 'Michael Jill']
    pyDatalog.create_terms('knows, '
                           'has_link, '
                           'all_connections, '
                           'max_five_people, '
                           'helper')

    # First, treat calls as simple social links (denoted as knows), that have no date
    # the caller knows callee
    for i in range(len(calls)):
        +knows(calls.iloc[i, 1], calls.iloc[i, 2])
        # Task 1: Knowing someone is a bi-directional relationship -> define the predicate accordingly
    knows(X, Y) <= knows(Y, X) & (X != Y)

    print(knows(suspect, Y))

    # Task 2: Define the predicate has_link in a way that it is true if a connection exists
    # (path of people knowing the next link)
    # Hints:
    # check if your predicate works: at least 1 of the following asserts should be true
    # (2 if you read in all 150 communication records)
    #   (be aware of the unusual behaviour that if an assert evaluates as true, an exception is thrown)

    has_link(X, Y) <= has_link(Z, Y) & knows(X, Z) & (X != Y)
    has_link(X, Y) <= knows(X, Y)

    assert (has_link('Quandt Katarina', company_Board[0]) == ())
    # assert (has_link('Quandt Katarina', company_Board[1]) == ())
    # assert (has_link('Quandt Katarina', company_Board[2]) == ())

    # 'Quandt Katarina' knows 'Eder Eva' and 'Michael Jill'

    # Task 3: You already know that a connection exists; now find the concrete paths between the board members
    # and the suspect

    helper(X, Y, P2) <= (X != Y) & (X._not_in(P2)) & (Y._not_in(P2))

    all_connections(X, Y, P) <= all_connections(X, Z, P2) & knows(
        Z, Y) & helper(X, Y, P2) & (P == P2 + [Z])
    all_connections(X, Y, P) <= knows(X, Y) & (P == [])

    # Task 4: There are too many paths. We are only interested in short paths.
    # Find all the paths between the suspect and the company board that contain five people or less

    (max_five_people(X, Y, P, C)) <= (max_five_people(X, Z, P2, C2)) & knows(Z, Y) \
    & helper(X, Y, P2) & (P == P2+[Z]) & (C == C2 + 1) & (C <= 2)
    (max_five_people(X, Y, P, C)) <= knows(X, Y) & (P == []) & (C == 0)

    for member in company_Board:
        print("Who ", suspect, "/", member)
        print(max_five_people(suspect, member, P, C))
        print("Who ", member, "/", suspect)
        print(max_five_people(member, suspect, P, C))

    # ---------------------------------------------------------------------------
    # Call-Data analysis:
    # Now we use the text and the calls data together with their corresponding dates
    # ---------------------------------------------------------------------------
    date_board_decision = '12.2.2017'
    date_shares_bought = '23.2.2017'

    pyDatalog.create_terms(
        'called, texted, descending_communication, data_valid')
    pyDatalog.clear()
    for i in range(len(calls)):  # calls
        +called(calls.iloc[i, 1], calls.iloc[i, 2], calls.iloc[i, 3])
    for i in range(len(texts)):  # texts
        +texted(texts.iloc[i, 1], texts.iloc[i, 2], texts.iloc[i, 3])

    # calls are bi-directional
    called(X, Y, Z) <= called(Y, X, Z)

    # Task 5: Again we are interested in links, but this time a connection is only valid
    # if the links are descending in date;
    #         find out who could have actually sent the information by adding this new restriction

    data_valid(D) <= (D >= date_board_decision) & (D <= date_shares_bought)
    helper(X, Y, P, P2, D, D2) <= (X != Y) & (X._not_in(P2)) & (
        Y._not_in(P2)) & (P == P2 + [D2] + [Y] + [D])

    print("descending_communication")
    (descending_communication(X, Y, D, P)) <= \
    (descending_communication(X, Z, D2, P2)) & (called(Z, Y, D) or texted(Z, Y, D)) & helper(X, Y, P, P2, D, D2)\
    & data_valid(D) & data_valid(D2) & (D < D2)
    (descending_communication(X, Y, D, P)) <= called(X, Y, D) & (P == [Y])

    # (descending_communication(X, Y, D, P)) <= \
    # (descending_communication(X, Z, D2, P2)) & texted(Z, Y, D) & (X != Y) & \
    # (X._not_in(P2)) & (Y._not_in(P2)) & (P == P2+[D2]+[Y]+[D]) & \
    # (D >= date_board_decision) & (D <= date_shares_bought) & (D < D2) & (D2 >= date_board_decision) & (D2 <= date_shares_bought)
    # (descending_communication(X, Y, D, P)) <= texted(X, Y, D) & (P == [Y])

    # D2 ist das Datum des vorhergehenden Anrufs / Kommunikation

    # Task 6: Find all the communication paths that lead to the suspect
    # (with the restriction that the dates have to be ordered correctly)

    for member in company_Board:
        print("From ", suspect, 'to ', member)
        print(descending_communication(suspect, member, D, P))
        print("From ", member, "to ", suspect)
        print(descending_communication(member, suspect, D, P))