def main(): '''EDM package examples. df denotes a Pandas DataFrame. S and M denote dictionaries of Pandas DataFrames''' dataFiles = [ "TentMap_rEDM.csv", "TentMapNoise_rEDM.csv", "circle.csv", "block_3sp.csv", "sardine_anchovy_sst.csv" ] # Create map of module dataFiles pathnames in Files Files = {} for file in dataFiles: filename = "data/" + file if pkg_resources.resource_exists( EDM.__name__, filename ): Files[ file ] = \ pkg_resources.resource_filename( EDM.__name__, filename ) else : raise Exception( "examples.py: Failed to find data file " + \ file + " in EDM package" ) # Note the path argument is empty "", file path is in Files{} df = EDM.EmbedDimension( "", Files[ "TentMap_rEDM.csv" ], None, "./", "", "1 100", "201 500", 10, 1, 1, "TentMap", "", False, False, 4 ) df = EDM.PredictInterval( "", Files[ "TentMap_rEDM.csv" ], None, "./", "", "1 100", "201 500", 10, 2, 1, "TentMap", "", False, False, 4 ); df = EDM.PredictNonlinear( "", Files[ "TentMapNoise_rEDM.csv" ], None, "./", "", "1 100", "201 500", "", 2, 1, 0, 1, "TentMap", "", False, False, 4 ) # Tent map simplex : specify multivariable columns embedded = True df = EDM.Simplex( "", Files[ "block_3sp.csv" ], None, "./", "", "1 99", "100 198", 3, 1, 0, 1, 0, "x_t y_t z_t", "x_t", True, False, True, True ) # Tent map simplex : Embed column x_t to E=3, embedded = False df = EDM.Simplex( "", Files[ "block_3sp.csv" ], None, "./", "", "1 99", "100 195", 3, 1, 0, 1, 0, "x_t", "x_t", False, False, True, True ) M = EDM.Multiview( "", Files[ "block_3sp.csv" ], None, "./", "", "1 100", "101 198", 3, 1, 0, 1, "x_t y_t z_t", "x_t", 0, 0, False, 4, True ) # S-map circle : specify multivariable columns embedded = True S = EDM.SMap( "", Files[ "circle.csv" ], None, "./", "", "1 100", "101 198", 2, 1, 0, 1, 4, 0, "x y", "x", "", "", True, False, True, True ) df = EDM.CCM( "", Files[ "sardine_anchovy_sst.csv" ], None, "./", "", 3, 0, 0, 1, "anchovy", "np_sst", "10 70 10", 100, True, False, 0, True, True )
def main(): '''EDM package examples. df denotes a Pandas DataFrame. S and M denote dictionaries of Pandas DataFrames''' dataFiles = [ "TentMap_rEDM.csv", "TentMapNoise_rEDM.csv", "circle.csv", "block_3sp.csv", "sardine_anchovy_sst.csv" ] # Create map of module dataFiles pathnames in Files Files = {} for file in dataFiles: filename = "data/" + file if pkg_resources.resource_exists( EDM.__name__, filename ): Files[ file ] = \ pkg_resources.resource_filename( EDM.__name__, filename ) else : raise Exception( "examples.py: Failed to find data file " + \ file + " in EDM package" ) # Note the path argument is empty "", file path is in Files{} df = EDM.EmbedDimension( pathIn = "", dataFile = Files["TentMap_rEDM.csv"], lib = "1 100", pred = "201 500", maxE = 10, Tp = 1, tau = -1, exclusionRadius = 0, columns = "TentMap", target = "TentMap", validLib = [], numThreads = 4 ) df = EDM.PredictInterval( pathIn = "", dataFile = Files["TentMap_rEDM.csv"], lib = "1 100", pred = "201 500", maxTp = 10, E = 2, tau = -1, exclusionRadius = 0, columns = "TentMap", target = "TentMap", validLib = [], numThreads = 4 ); df = EDM.PredictNonlinear( pathIn = "", dataFile = Files[ "TentMapNoise_rEDM.csv" ], lib = "1 100", pred = "201 500", E = 2, Tp = 1, knn = 0, tau = -1, columns = "TentMap", target = "TentMap", validLib = [], numThreads = 4 ) # Tent map simplex : specify multivariable columns embedded = True S = EDM.Simplex( pathIn = "", dataFile = Files[ "block_3sp.csv" ], lib = "1 99", pred = "100 198", E = 3, Tp = 1, knn = 0, tau = -1, exclusionRadius = 0, columns = "x_t y_t z_t", target = "x_t", embedded = True, showPlot = True, validLib = [], generateSteps = 0, parameterList = False ) # Tent map simplex : Embed column x_t to E=3, embedded = False S = EDM.Simplex( pathIn = "", dataFile = Files[ "block_3sp.csv" ], lib = "1 99", pred = "100 198", E = 3, Tp = 1, knn = 0, tau = -1, exclusionRadius = 0, columns = "x_t y_t z_t", target = "x_t", embedded = False, showPlot = True, validLib = [], generateSteps = 0, parameterList = False ) M = EDM.Multiview( pathIn = "", dataFile = Files[ "block_3sp.csv" ], lib = "1 100", pred = "101 198", D = 0, E = 3, Tp = 1, knn = 0, tau = -1, multiview = 0, exclusionRadius = 0, columns = "x_t y_t z_t", target = "x_t", trainLib = True, excludeTarget = False, numThreads = 4, showPlot = True ) # S-map circle : specify multivariable columns embedded = True S = EDM.SMap( pathIn = "", dataFile = Files[ "circle.csv" ], lib = "1 100", pred = "101 198", E = 2, Tp = 1, knn = 0, tau = -1, theta = 4, exclusionRadius = 0, columns = "x y", target = "x", solver = None, embedded = True, validLib = [], generateSteps = 0, parameterList = False ) CM = EDM.CCM( pathIn = "", dataFile = Files[ "sardine_anchovy_sst.csv" ], E = 3, Tp = 0, knn = 0, tau = -1, exclusionRadius = 0, columns = "anchovy", target = "np_sst", libSizes = "10 70 10", sample = 100, random = True, replacement = False, seed = 0, includeData = False, parameterList = False, verbose = False, showPlot = True )