# Grab the file and get its attributes: shapefile = 'sample:CSC_Boundaries' attributes = pyGDP.getAttributes(shapefile) for attr in attributes: print(attr) # Grab the values from 'area_name' and 'sample:CSC_Boundaries' usr_attribute = 'area_name' values = pyGDP.getValues(shapefile, usr_attribute) for v in values: print(v) usr_value = 'Southwest' dataSetURI = 'dods://cida.usgs.gov/thredds/dodsC/gmo/GMO_w_meta.ncml' dataTypes = pyGDP.getDataType(dataSetURI) for d in dataTypes: print(d) dataType = 'Prcp' # Get available time range on the dataset timeRange = pyGDP.getTimeRange(dataSetURI, dataType) for t in timeRange: print(t) timeBegin = '1960-01-01T00:00:00.000Z' timeEnd = '1960-01-21T00:00:00.000Z' outputPath = pyGDP.submitFeatureWeightedGridStatistics(shapefile, dataSetURI, dataType, timeBegin,
# In[19]: usr_attribute="hru_id" usr_values=None #usr_values = pyGDP.getValues(shapefile, usr_attribute) #for v in values: # print v # In[7]: # Set our datasetURI #dataSetURI = 'dods://cida.usgs.gov/thredds/dodsC/prism' dataSetURI = 'http://thredds.daac.ornl.gov/thredds/dodsC/daymet-agg/daymet-agg.ncml' # Get the available data types associated with the dataset datatypes = pyGDP.getDataType(dataSetURI) for dt in datatypes: print dt # In[9]: # Set the dataType. Note that leaving dataType out below will select all. # Get available time range on the dataset dataType='prcp' timeRange = pyGDP.getTimeRange(dataSetURI, dataType) for t in timeRange: print t # In[14]:
else: ofp.write('CIDA_output_handle, datatype\n') # Loop through the datasets (Time periods) print '\nGetting DataTypes for each URI...' for URI in dataSetURIs: # Get list of datatypes based on realization and parameters specified above datatypes_list = [] # in case the server bombs out, try again dTypes = False while not dTypes: try: print '\n{}'.format(URI) dataTypes = pyGDP.getDataType(URI) dTypes = True except Exception, e: print e print "trying again in a moment..." time.sleep(5) print "asking again for dataTypes..." if len(dataTypes) == 0: print "Error! no datasets returned." for d in dataTypes: for p in parameters: if realization in d and p in d: datatypes_list.append(d)
# 'http://localhost:8080/thredds/dodsC/Scratch/thredds/bcca/bcca/cmip5/derivatives/ncml/days_prcp_abv_cmip5_der.ncml', # 'http://localhost:8080/thredds/dodsC/Scratch/thredds/bcca/bcca/cmip5/derivatives/ncml/cooling_degree_day_cmip5_der.ncml', # 'http://localhost:8080/thredds/dodsC/Scratch/thredds/bcca/bcca/cmip5/derivatives/ncml/longest_run_tmax_abv_cmip5_hist_der.ncml', # 'http://localhost:8080/thredds/dodsC/Scratch/thredds/bcca/bcca/cmip5/derivatives/ncml/longest_run_prcp_blw_cmip5_hist_der.ncml', # 'http://localhost:8080/thredds/dodsC/Scratch/thredds/bcca/bcca/cmip5/derivatives/ncml/heating_degree_day_cmip5_hist_der.ncml', # 'http://localhost:8080/thredds/dodsC/Scratch/thredds/bcca/bcca/cmip5/derivatives/ncml/growing_season_lngth_cmip5_hist_der.ncml', # 'http://localhost:8080/thredds/dodsC/Scratch/thredds/bcca/bcca/cmip5/derivatives/ncml/growing_degree_day_cmip5_hist_der.ncml', # 'http://localhost:8080/thredds/dodsC/Scratch/thredds/bcca/bcca/cmip5/derivatives/ncml/days_tmin_blw_cmip5_hist_der.ncml', # 'http://localhost:8080/thredds/dodsC/Scratch/thredds/bcca/bcca/cmip5/derivatives/ncml/days_tmax_abv_cmip5_hist_der.ncml', # 'http://localhost:8080/thredds/dodsC/Scratch/thredds/bcca/bcca/cmip5/derivatives/ncml/days_prcp_abv_cmip5_hist_der.ncml', # 'http://localhost:8080/thredds/dodsC/Scratch/thredds/bcca/bcca/cmip5/derivatives/ncml/cooling_degree_day_cmip5_hist_der.ncml'] for dataURI in dataURIs: remote_dataURI=dataURI.replace('http://localhost:8080/thredds/dodsC/Scratch/thredds/bcca/bcca/cmip5/derivatives/','http://cida-eros-thredds3.er.usgs.gov:8080/thredds/dodsC/cmip5_bcca/derivatives/') print(remote_dataURI) dataTypes = pyGDP.getDataType(remote_dataURI) timeRange = pyGDP.getTimeRange(remote_dataURI, dataTypes[0]) if len(dataTypes)==1: dataTypes=dataTypes[0] for shapefile in shapefiles.keys(): outputfilename=shapefile.replace('derivative:','')+'_'+dataURI.replace('http://localhost:8080/thredds/dodsC/Scratch/thredds/bcca/bcca/cmip5/derivatives/ncml/','') outputfilename=outputfilename.replace('http://localhost:8080/thredds/dodsC/Scratch/thredds/bcca/bcca/cmip5/derivatives/averages_rcp/ncml/','') outputfilename=outputfilename.replace('http://localhost:8080/thredds/dodsC/Scratch/thredds/bcca/bcca/cmip5/derivatives/averages_hist/ncml/','') outputfilename=outputfilename.replace('http://localhost:8080/thredds/dodsC/Scratch/thredds/bcca/bcca/cmip5/derivatives/averages_gmo/ncml/','') outputfilename=outputfilename.replace('http://localhost:8080/thredds/dodsC/Scratch/thredds/bcca/bcca/cmip5/derivatives/cmip5_obs_der/','') if not os.path.isfile(outputfilename): open(outputfilename, 'a').close() print shapefile print dataURI print dataTypes print timeRange
# 'http://localhost:8080/thredds/dodsC/Scratch/thredds/bcca/bcca/cmip5/derivatives/ncml/longest_run_prcp_blw_cmip5_hist_der.ncml', # 'http://localhost:8080/thredds/dodsC/Scratch/thredds/bcca/bcca/cmip5/derivatives/ncml/heating_degree_day_cmip5_hist_der.ncml', # 'http://localhost:8080/thredds/dodsC/Scratch/thredds/bcca/bcca/cmip5/derivatives/ncml/growing_season_lngth_cmip5_hist_der.ncml', # 'http://localhost:8080/thredds/dodsC/Scratch/thredds/bcca/bcca/cmip5/derivatives/ncml/growing_degree_day_cmip5_hist_der.ncml', # 'http://localhost:8080/thredds/dodsC/Scratch/thredds/bcca/bcca/cmip5/derivatives/ncml/days_tmin_blw_cmip5_hist_der.ncml', # 'http://localhost:8080/thredds/dodsC/Scratch/thredds/bcca/bcca/cmip5/derivatives/ncml/days_tmax_abv_cmip5_hist_der.ncml', # 'http://localhost:8080/thredds/dodsC/Scratch/thredds/bcca/bcca/cmip5/derivatives/ncml/days_prcp_abv_cmip5_hist_der.ncml', # 'http://localhost:8080/thredds/dodsC/Scratch/thredds/bcca/bcca/cmip5/derivatives/ncml/cooling_degree_day_cmip5_hist_der.ncml'] for dataURI in dataURIs: remote_dataURI = dataURI.replace( 'http://localhost:8080/thredds/dodsC/Scratch/thredds/bcca/bcca/cmip5/derivatives/', 'http://cida-eros-thredds3.er.usgs.gov:8080/thredds/dodsC/cmip5_bcca/derivatives/' ) print(remote_dataURI) dataTypes = pyGDP.getDataType(remote_dataURI) timeRange = pyGDP.getTimeRange(remote_dataURI, dataTypes[0]) if len(dataTypes) == 1: dataTypes = dataTypes[0] for shapefile in shapefiles.keys(): outputfilename = shapefile.replace( 'derivative:', '' ) + '_' + dataURI.replace( 'http://localhost:8080/thredds/dodsC/Scratch/thredds/bcca/bcca/cmip5/derivatives/ncml/', '') outputfilename = outputfilename.replace( 'http://localhost:8080/thredds/dodsC/Scratch/thredds/bcca/bcca/cmip5/derivatives/averages_rcp/ncml/', '') outputfilename = outputfilename.replace( 'http://localhost:8080/thredds/dodsC/Scratch/thredds/bcca/bcca/cmip5/derivatives/averages_hist/ncml/', '')