예제 #1
0
파일: utils.py 프로젝트: prokoph/enrico
def GetCovar(srcname, Fit, verbose=True):
    """Extract covariance matrix"""
    import pyLikelihood
    par_index_map = {}
    indx = 0
    for src in Fit.sourceNames():
        parNames = pyLikelihood.StringVector()
        Fit[src].src.spectrum().getFreeParamNames(parNames)
        for par in parNames:
            par_index_map["::".join((src, par))] = indx
            indx += 1
    if Fit.covariance is None:
        raise RuntimeError("Covariance matrix has not been computed.")
    covar = np.array(Fit.covariance)
    if len(covar) != len(par_index_map):
        raise RuntimeError("Covariance matrix size does not match the " +
                           "number of free parameters.")
    my_covar = []
    srcpars = pyLikelihood.StringVector()
    Fit[srcname].src.spectrum().getFreeParamNames(srcpars)
    pars = ["::".join((srcname, x)) for x in srcpars]
    for xpar in pars:
        ix = par_index_map[xpar]
        my_covar.append([covar[ix][par_index_map[ypar]] for ypar in pars])
    if verbose:
        print "The covariance matrix is :\n", np.array(my_covar)
        print

    return my_covar
예제 #2
0
 def __init__(self, like, srcName):
     self.like = like
     self.srcName = srcName
     self.src = like[srcName].src
     par_index_map = {}
     indx = 0
     for src in like.sourceNames():
         parNames = pyLike.StringVector()
         like[src].src.spectrum().getFreeParamNames(parNames)
         for par in parNames:
             par_index_map["::".join((src, par))] = indx
             indx += 1
     #
     # Build the source-specific covariance matrix.
     #
     if like.covariance is None:
         raise RuntimeError("Covariance matrix has not been computed.")
     covar = num.array(like.covariance)
     if len(covar) != len(par_index_map):
         raise RuntimeError("Covariance matrix size does not match the " +
                            "number of free parameters.")
     my_covar = []
     srcpars = pyLike.StringVector()
     like[srcName].src.spectrum().getFreeParamNames(srcpars)
     pars = ["::".join((srcName, x)) for x in srcpars]
     for xpar in pars:
         ix = par_index_map[xpar]
         my_covar.append([covar[ix][par_index_map[ypar]] for ypar in pars])
     self.covar = num.array(my_covar)
     self.srcpars = srcpars
예제 #3
0
    def __call__(self, xval=100, verbose=0):
        x = pyLike.dArg(xval)
        y0 = self.func.value(x)
        params = pyLike.DoubleVector()
        self.func.getFreeParamValues(params)

        eps = 1e-7
        num_derivs = []
        for i in range(len(params)):
            new_params = list(params)
            delta = new_params[i] * eps
            if delta == 0:
                delta = eps
            new_params[i] += delta
            self.func.setFreeParamValues(new_params)
            y1 = self.func.value(x)
            num_derivs.append((y1 - y0) / delta)

        derivs = pyLike.DoubleVector()

        self.func.setFreeParamValues(params)
        self.func.getFreeDerivs(x, derivs)

        for i, d0, d1 in zip(range(len(derivs)), num_derivs, derivs):
            try:
                assert (compare_floats(d0, d1))
                if verbose:
                    raise AssertionError
            except AssertionError:
                parnames = pyLike.StringVector()
                self.func.getFreeParamNames(parnames)
                print "Parameter : ", i, parnames[i]
                print "%.3e  " * len(num_derivs) % tuple(num_derivs)
                print "%.3e  " * len(derivs) % tuple(derivs) + "\n"
        return tuple(params)
예제 #4
0
 def plot(self, srcs=None, oplot=False, yrange=None, color=None):
     import hippoplotter as plot
     if oplot and color is None:
         color = 'red'
     elif color is None:
         color = 'black'
     if isinstance(srcs, str):
         total = self._plot_model(srcs,
                                  yrange=yrange,
                                  color=color,
                                  oplot=oplot,
                                  lineStyle='Solid')
     else:
         if srcs is None:
             srcs = pyLike.StringVector()
             self.logLike.getSrcNames(srcs)
         total = self._plot_model(srcs[0],
                                  yrange=yrange,
                                  color=color,
                                  oplot=oplot)
         if len(srcs) > 1:
             for src in list(srcs[1:]):
                 total += self._plot_model(src, oplot=True, color=color)
         self._plot_model(total, color=color, oplot=True, lineStyle='Solid')
     self._plot_residuals(total, oplot=oplot, color=color)
예제 #5
0
def get_function_pars(fn):
    """Extract the parameters of a pyLikelihood function object
    (value, scale, bounds).

    Parameters
    ----------

    fn : pyLikelihood.Function

    Returns
    -------

    pars : list

    """

    pars = []
    par_names = pyLike.StringVector()
    fn.getParamNames(par_names)

    for pname in par_names:

        par = fn.getParam(pname)
        bounds = par.getBounds()
        perr = par.error() if par.isFree() else np.nan
        pars += [dict(name=pname,
                      value=par.getValue(),
                      error=perr,
                      min=bounds[0],
                      max=bounds[1],
                      free=par.isFree(),
                      scale=par.getScale())]

    return pars
예제 #6
0
 def __init__(self, Fit, pars):
     self.Fit = Fit
     self.Model = Fit[pars.srcname].funcs['Spectrum'].genericName()
     self.ptsrc = pyLikelihood.PointSource_cast(Fit[pars.srcname].src)
     self.covar = np.array(utils.GetCovar(pars.srcname, self.Fit, False))
     self.srcpars = pyLikelihood.StringVector()
     Fit[pars.srcname].src.spectrum().getFreeParamNames(self.srcpars)
예제 #7
0
    def _setNuisanceParameters(self):

        # Get the list of the sources
        sources = list(self.like.model.srcNames)

        freeParamNames = []
        for srcName in sources:
            thisNamesV = pyLike.StringVector()
            thisSrc = self.like.logLike.getSource(srcName)
            thisSrc.spectrum().getFreeParamNames(thisNamesV)
            thisNames = ["%s_%s" % (srcName, x) for x in thisNamesV]
            freeParamNames.extend(thisNames)
        pass

        nuisanceParameters = collections.OrderedDict()

        for name in freeParamNames:

            value = self.getNuisanceParameterValue(name)
            bounds = self.getNuisanceParameterBounds(name)
            delta = self.getNuisanceParameterDelta(name)

            nuisanceParameters["%s_%s" % (self.name, name)] = Parameter(
                "%s_%s" % (self.name, name),
                value,
                min_value=bounds[0],
                max_value=bounds[1],
                delta=delta,
            )

            nuisanceParameters["%s_%s" %
                               (self.name,
                                name)].free = self.fit_nuisance_params

        return nuisanceParameters
예제 #8
0
    def calcBowtie(self, srcName, minE, maxE, numBins):
        '''This is derived from T. Johnson's likeSED code which was in turn
        derived from D. Sanchez's pyUnfoldPlot code which was probably
        based on some code developed by J. Chiang.  '''
        '''make some energy bounds for the fit, same max and min as for the
        bands before but with more bins.'''

        modEs = qU.log_array(numBins, minE, maxE)
        centEs = [0.5 * (e1 + e2) for e1, e2 in zip(modEs[0:-1], modEs[1:])]
        '''Get the model.'''
        mysrc = pyLike.PointSource_cast(self.MIN[srcName].src)
        spec = [
            float(1000. * mysrc.spectrum()(pyLike.dArg(x))) for x in centEs
        ]

        if (self.MIN.covariance is None):
            print "Whoa, you didn't compute the covariance yet..."
            bt = [0]
        else:
            bt = []
            covArray = np.array(self.MIN.covariance)
            srcCovArray = []
            par_index_map = {}
            indx = 0
            for src in self.MIN.sourceNames():
                parNames = pyLike.StringVector()
                self.MIN[src].src.spectrum().getFreeParamNames(parNames)
                for par in parNames:
                    par_index_map['::'.join((src, par))] = indx
                    indx += 1
            srcPars = pyLike.StringVector()
            self.MIN[srcName].src.spectrum().getFreeParamNames(srcPars)
            pars = ['::'.join((srcName, x)) for x in srcPars]
            for xpar in pars:
                ix = par_index_map[xpar]
                srcCovArray.append(
                    [covArray[ix][par_index_map[ypar]] for ypar in pars])
            cov = np.array(srcCovArray)
            ''' The whole point here is to get the srcCovArray.'''
            for x in centEs:
                arg = pyLike.dArg(x)
                partials = np.array(
                    [mysrc.spectrum().derivByParam(arg, y) for y in srcPars])
                val = np.sqrt(np.dot(partials, np.dot(cov, partials)))
                '''These should come out same as the model so convert to ph/cm^2/s/GeV as well.'''
                bt += [float(1000. * val)]
        return centEs, bt, spec
예제 #9
0
 def nested(self):
     if self.src.getType() != "Composite":
         return None
     comp = pyLike.CompositeSource.cast(self.src)
     sv = pyLike.StringVector()
     comp.getSrcNames(sv)
     n = [sv[i] for i in range(sv.size())]
     return n
예제 #10
0
 def _loadSources(self):
     srcNames = pyLike.StringVector()
     self.logLike.getSrcNames(srcNames)
     self.srcNames = tuple(srcNames)
     self.srcs = {}
     for name in srcNames:
         self.srcs[name] = Source(self.logLike.getSource(name))
     self._walk()
     self.printFreeOnly = False
예제 #11
0
 def getPriorParams(self):
     prior = self.parameter.log_prior()
     if prior is None:
         return None
     pars = {}
     names = pyLike.StringVector()
     prior.getParamNames(names)
     for name in names:
         pars[name] = prior.getParamValue(name)
     return pars
예제 #12
0
def init_function_pars():

    global FUNCTION_PAR_NAMES
    global FUNCTION_NORM_PARS
    global FUNCTION_DEFAULT_PARS

    FUNCTION_PAR_NAMES = {}
    FUNCTION_NORM_PARS = {}

    funcFactory = pyLike.SourceFactory_funcFactory()

    names = pyLike.StringVector()
    funcFactory.getFunctionNames(names)

    for fname in names:

        pars = FUNCTION_DEFAULT_PARS.setdefault(fname, {})
        par_names = FUNCTION_PAR_NAMES.setdefault(fname, [])

        if 'EblAtten' in fname and fname[len('EblAtten::'
                                             ):] in FUNCTION_DEFAULT_PARS:
            pars.update(FUNCTION_DEFAULT_PARS[fname[len('EblAtten::'):]])

        fn = funcFactory.create(fname)
        try:
            FUNCTION_NORM_PARS[fname] = fn.normPar().getName()
        except Exception:
            FUNCTION_NORM_PARS[fname] = None

        params = pyLike.ParameterVector()
        fn.getParams(params)

        for i, p in enumerate(params):

            pname = p.getName()
            par_names += [pname]

            if pname == 'Scale':
                pars.setdefault(pname, DEFAULT_SCALE_DICT)
            elif pname == 'Prefactor':
                pars.setdefault(pname, DEFAULT_NORM_DICT)
            else:
                pars.setdefault(pname, {})

            bounds = p.getBounds()
            par_dict = dict(name=pname,
                            value=p.getValue(),
                            min=bounds[0],
                            max=bounds[1],
                            scale=1.0,
                            free=False)

            par_dict.update(copy.deepcopy(pars[pname]))
            par_dict['name'] = pname
            pars[pname] = par_dict
예제 #13
0
 def __init__(self, func, srcName=None, source_obj=None):
     self.func = func
     self.srcName = srcName
     names = pyLike.StringVector()
     func.getParamNames(names)
     self.paramNames = list(names)
     self.params = {}
     for name in self.paramNames:
         self.params[name] = Parameter(self.func.getParam(name), srcName,
                                       source_obj)
     self._parIds = []
예제 #14
0
    def _compositeIndex(self, target_component, target_src, target_par):
        indx = -1
        #
        # Loop over non-tied parameters
        #
        for tiedName, component in zip(self.srcNames, self.components):
            srcNames = component.sourceNames()
            for src in srcNames:
                if src != tiedName:
                    spec = component.model[src].funcs['Spectrum']
                    parnames = pyLike.StringVector()
                    spec.getFreeParamNames(parnames)
                    for parname in parnames:
                        indx += 1
                        if (target_component == tiedName and target_src == src
                                and target_par == parname):
                            return indx

        #
        # Loop over tied parameters for common sources (just need to do
        # this for the first component).
        #
        spec = self.components[0].model[self.srcNames[0]].funcs['Spectrum']
        parnames = pyLike.StringVector()
        spec.getFreeParamNames(parnames)
        for parname in parnames:
            if parname != spec.normPar().getName():
                indx += 1
                if target_src in self.srcNames and target_par == parname:
                    return indx
        #
        # Loop over normalization parameters
        #
        for src, component in zip(self.srcNames, self.components):
            spec = component.model[src].funcs['Spectrum']
            if spec.normPar().isFree():
                parname = spec.normPar().getName()
                indx += 1
                if target_src == src and target_par == parname:
                    return indx
        return indx
예제 #15
0
 def _set_errors(self, errors):
     my_errors = list(errors)
     #
     # Set errors for untied sources
     #
     for tiedName, component in zip(self.srcNames, self.components):
         srcNames = component.sourceNames()
         for src in srcNames:
             if src != tiedName:
                 spec = component.model[src].funcs['Spectrum']
                 parnames = pyLike.StringVector()
                 spec.getFreeParamNames(parnames)
                 for parname in parnames:
                     par_index = component.par_index(src, parname)
                     component.model[par_index].setError(my_errors.pop(0))
     #
     # Set errors for tied parameters for common sources
     #
     spec = self.components[0].model[self.srcNames[0]].funcs['Spectrum']
     numTiedPars = spec.getNumFreeParams()
     if spec.normPar().isFree():
         numTiedPars -= 1
     for src, component in zip(self.srcNames, self.components):
         tied_errors = my_errors[:numTiedPars]
         spec = component.model[src].funcs['Spectrum']
         parnames = pyLike.StringVector()
         spec.getFreeParamNames(parnames)
         for parname in parnames:
             if parname != spec.normPar().getName():
                 par_index = component.par_index(src, parname)
                 component.model[par_index].setError(tied_errors.pop(0))
     #
     # Set errors for normalization parameters
     #
     norm_errors = my_errors[numTiedPars:]
     for src, component in zip(self.srcNames, self.components):
         spec = component.model[src].funcs['Spectrum']
         if spec.normPar().isFree():
             parname = spec.normPar().getName()
             par_index = component.par_index(src, parname)
             component.model[par_index].setError(norm_errors.pop(0))
예제 #16
0
 def restore(self, srcName=None):
     if srcName is None:
         for par, likePar in zip(self.pars, self.like.params()):
             par.setDataMembers(likePar)
     else:
         parNames = pyLikelihood.StringVector()
         self.like[srcName].src.spectrum().getParamNames(parNames)
         for parName in parNames:
             indx = self.like.par_index(srcName, parName)
             likePar = self.like.params()[indx]
             self.pars[indx].setDataMembers(likePar)
     self.like.syncSrcParams()
예제 #17
0
    def run(self, argv):
        """Run this analysis"""
        args = self.parser.parse_args(argv)

        print("srcmaps = %s" % (args.srcmaps))
        obs = BinnedAnalysis.BinnedObs(irfs=args.irfs,
                                       expCube=args.expcube,
                                       srcMaps=args.srcmaps,
                                       binnedExpMap=args.bexpmap)

        like = BinnedAnalysis.BinnedAnalysis(
            obs,
            optimizer='MINUIT',
            srcModel=GtMergeSourceMaps.NULL_MODEL,
            wmap=None)

        like.logLike.set_use_single_fixed_map(False)

        print("Reading xml model from %s" % args.srcmdl)
        source_factory = pyLike.SourceFactory(obs.observation)
        source_factory.readXml(args.srcmdl, BinnedAnalysis._funcFactory, False,
                               True, True)
        strv = pyLike.StringVector()
        source_factory.fetchSrcNames(strv)
        source_names = [strv[i] for i in range(strv.size())]

        missing_sources = []
        srcs_to_merge = []
        for source_name in source_names:
            try:
                source = source_factory.releaseSource(source_name)
                # EAC, add the source directly to the model
                like.logLike.addSource(source)
                srcs_to_merge.append(source_name)
            except KeyError:
                missing_sources.append(source_name)

        comp = like.mergeSources(args.merged, source_names, 'ConstantValue')
        like.logLike.getSourceMap(comp.getName())

        print("Merged %i sources into %s" %
              (len(srcs_to_merge), comp.getName()))
        if len(missing_sources) > 0:
            print("Missed sources: ", missing_sources)

        print("Writing output source map file %s" % args.outfile)
        like.logLike.saveSourceMaps(args.outfile, False, False)
        if args.gzip:
            os.system("gzip -9 %s" % args.outfile)

        print("Writing output xml file %s" % args.outxml)
        like.writeXml(args.outxml)
예제 #18
0
    def _setNuisanceParameters(self):

        # Get the list of the sources
        sources = list(self.like.model.srcNames)

        freeParamNames = []
        for srcName in sources:
            thisNamesV = pyLike.StringVector()
            thisSrc = self.like.logLike.getSource(srcName)
            thisSrc.spectrum().getFreeParamNames(thisNamesV)
            thisNames = map(lambda x: "%s_%s" % (srcName, x), thisNamesV)
            freeParamNames.extend(thisNames)
        pass

        nuisanceParameters = collections.OrderedDict()

        for name in freeParamNames:

            value = self.getNuisanceParameterValue(name)
            bounds = self.getNuisanceParameterBounds(name)
            delta = self.getNuisanceParameterDelta(name)

            nuisanceParameters["%s_%s" % (self.name, name)] = Parameter("%s_%s" % (self.name, name),
                                                                        value,
                                                                        min_value=bounds[0],
                                                                        max_value=bounds[1],
                                                                        delta=delta)

            nuisanceParameters["%s_%s" % (self.name, name)].free = self.innerMinimization

            # Prepare a callback which will set the parameter value in the pyLikelihood object if it gets
            # changed
            # def this_callback(parameter):
            #
            #     _, src, pname = parameter.name.split("_")
            #
            #     try:
            #
            #         self.like.model[src].funcs['Spectrum'].getParam(pname).setValue(parameter.value)
            #
            #     except:
            #
            #         import pdb;pdb.set_trace()
            #
            # nuisanceParameters["%s_%s" % (self.name, name)].add_callback(this_callback)

        return nuisanceParameters
예제 #19
0
    def get_dnde_error_mev_gtlike(spectrum, covariance_matrix, energies):
        """ asume energy in mev and return flux in units of ph/cm**2/s/MeV. """
        from .models import gtlike_unscale_all_parameters
        spectrum = gtlike_unscale_all_parameters(spectrum)

        dnde_err = np.empty_like(energies)
        for i, energy in enumerate(energies):

            # method taken from pyLikelihood.FluxDensity
            srcpars = pyLikelihood.StringVector()
            spectrum.getParamNames(srcpars)
            arg = pyLikelihood.dArg(energy)
            partials = np.array(
                [spectrum.derivByParam(arg, x) for x in srcpars])
            dnde_err[i] = np.sqrt(
                np.dot(partials, np.dot(covariance_matrix, partials)))
        return dnde_err
예제 #20
0
    def run_analysis(self, argv):
        """Run this analysis"""
        args = self._parser.parse_args(argv)
        obs = BinnedAnalysis.BinnedObs(irfs=args.irfs,
                                       expCube=args.expcube,
                                       srcMaps=args.cmap,
                                       binnedExpMap=args.bexpmap)

        like = BinnedAnalysis.BinnedAnalysis(obs,
                                             optimizer='MINUIT',
                                             srcModel=GtSrcmapsCatalog.NULL_MODEL,
                                             wmap=None)

        source_factory = pyLike.SourceFactory(obs.observation)
        source_factory.readXml(args.srcmdl, BinnedAnalysis._funcFactory,
                               False, True, True)

        srcNames = pyLike.StringVector()
        source_factory.fetchSrcNames(srcNames)

        min_idx = args.srcmin
        max_idx = args.srcmax
        if max_idx < 0:
            max_idx = srcNames.size();

        for i in xrange(min_idx, max_idx):
            if i == min_idx:
                like.logLike.saveSourceMaps(args.outfile)
                pyLike.CountsMapBase.copyAndUpdateDssKeywords(args.cmap,
                                                              args.outfile,
                                                              None,
                                                              args.irfs)

            srcName = srcNames[i]
            source = source_factory.releaseSource(srcName)
            like.logLike.addSource(source, False)
            like.logLike.saveSourceMap_partial(args.outfile, source)
            like.logLike.deleteSource(srcName)

        if args.gzip:
            os.system("gzip -9 %s" % args.outfile)
예제 #21
0
def get_priors(like):
    """Extract priors from a likelihood object."""

    npar = len(like.params())

    vals = np.ones(npar)
    errs = np.ones(npar)
    has_prior = np.array([False] * npar)

    for i, p in enumerate(like.params()):

        prior = like[i].log_prior()

        if prior is None:
            continue

        par_names = pyLike.StringVector()
        prior.getParamNames(par_names)

        if not 'Mean' in par_names:
            raise Exception('Failed to find Mean in prior parameters.')

        if not 'Sigma' in par_names:
            raise Exception('Failed to find Sigma in prior parameters.')

        for t in par_names:

            if t == 'Mean':
                vals[i] = prior.parameter(t).getValue()

            if t == 'Sigma':
                errs[i] = prior.parameter(t).getValue()

        has_prior[i] = True

    return vals, errs, has_prior
예제 #22
0
def build_pointlike_model(spectrum):
    """ Convert a gtlike model object to a pointlike
        model object.
        
            >>> spectrum = _funcFactory.create('PowerLaw')

            >>> param=spectrum.getParam('Prefactor')
            >>> param.setScale(10)
            >>> param.setTrueValue(1e-9)
            >>> param.setBounds(1e-11,1e-9)
            >>> param.setError(3e-11)
            >>> param.setFree(True)

            >>> param=spectrum.getParam('Index')
            >>> param.setScale(2)
            >>> param.setBounds(-10,5)
            >>> param.setTrueValue(-3)
            >>> param.setError(0.125)
            >>> param.setFree(False)

        Check spectral values:

            >>> model = build_pointlike_model(spectrum)
            >>> energies = np.logspace(1, 6, 10000)
            >>> from uw.darkmatter.spectral import DMFitFunction
            >>> np.allclose(DMFitFunction.call_pylike_spectrum(spectrum, energies),
            ...     model(energies), rtol=1e-20, atol=1e-20) 
            True

        Check prefactor:

            >>> model.get_scale('norm')
            10.0
            >>> np.allclose(model.get_limits('norm'),[1e-10, 1e-08])
            True
            >>> np.allclose(model.getp('norm'),1e-9)
            True
            >>> np.allclose(model.error('norm'),1e-10)
            True
            >>> model.get_free('norm')
            True

        Check index params:

            >>> model.get_scale('index')
            -2.0
            >>> model.get_limits('index')
            [-10.0, 20.0]
            >>> model.getp('index')
            3.0
            >>> np.allclose(model.error('index'),0.25)
            True
            >>> model.get_free('index')
            False

        Example creating a FileFunction object:
        
        First, create file out of old model:

            >>> from tempfile import NamedTemporaryFile
            >>> temp = NamedTemporaryFile()
            >>> filename = temp.name
            >>> model.save_profile(filename, emin=1, emax=1e6)
        
        Now, make FileFunction:

            >>> spectrum = pyLikelihood.FileFunction()
            >>> spectrum.readFunction(filename)

        Set param values:

            >>> param=spectrum.getParam('Normalization')
            >>> param.setScale(2)
            >>> param.setTrueValue(4)
            >>> param.setBounds(.1,10)

            >>> model = build_pointlike_model(spectrum)

        Test spectral points:

            >>> np.allclose(DMFitFunction.call_pylike_spectrum(spectrum, energies),
            ...     model(energies), rtol=1e-20, atol=1e-20) 
            True

        Test param values:

            >>> model.get_scale('Normalization')
            2.0
            >>> model.getp('Normalization')
            4.0
            >>> model.get_limits('Normalization')
            [0.2, 20.0]


    """
    gtlike_name = spectrum.genericName()

    if gtlike_name == 'FileFunction':
        ff = pyLikelihood.FileFunction_cast(spectrum)
        filename = ff.filename()
        model = FileFunction(file=filename)
    else:
        model = XML_to_Model.modict[gtlike_name]()

    param_names = pyLikelihood.StringVector()
    spectrum.getParamNames(param_names)
    for gtlike_name in param_names:
        pointlike_name = model.get_pointlike_name(gtlike_name)

        param = spectrum.getParam(gtlike_name)

        if pointlike_name in model.default_extra_params.keys():
            # no mapping for extra params
            model.setp(pointlike_name, param.getTrueValue())
        else:
            model.setp_gtlike(pointlike_name, param.getTrueValue())

            if pointlike_name in model.param_names:
                model.set_mapper(pointlike_name, LinearMapper)

                if param.getBounds()[0] < -3.4e+38 and param.getBounds(
                )[1] > 3.4e+38:
                    # No effective bound on parameters
                    pass
                else:
                    model.set_limits_gtlike(
                        pointlike_name,
                        lower=param.getBounds()[0] * param.getScale(),
                        upper=param.getBounds()[1] * param.getScale(),
                        scale=param.getScale())
                    model.set_error(pointlike_name,
                                    abs(param.error() * param.getScale()))
                    model.set_free(pointlike_name, param.isFree())
    return model