예제 #1
0
def make_mm_mmb():
    '''
	A function that returns the system mueller matrix for NACO based on Max's Luhman 16 fitting
	'''

    m_naco = NACO_mmb()  #The NACO Mueller Matrix
    m_p = cmm.Rotator()

    mm_list = [m_naco, m_p]

    naco_mm = MuellerMat.SystemMuellerMatrix(mm_list)

    return naco_mm
예제 #2
0
def on_sky(values):
    i = np.empty(shape=[0, 1])
    m_system = np.empty(shape=[0, 4])
    sys_mm = MuellerMat.SystemMuellerMatrix([cmm.WollastonPrism(), cmm.HWP(), cmm.Rotator()])

    # Calculate the Mueller matrices
    for j in range(len(values)):
        sys_mm.master_property_dict['HalfwaveRetarder']['theta'] = values[j][2]
        sys_mm.master_property_dict['Rotator']['pa'] = values[j][3]

        sys_mm.master_property_dict['WollastonPrism']['beam'] = 'o'
        row1 = sys_mm.evaluate()
        sys_mm.master_property_dict['WollastonPrism']['beam'] = 'e'
        row2 = sys_mm.evaluate()

        i = np.append(i, [[values[j][0]]], axis=0)
        m_system = np.append(m_system, [row1[0]], axis=0)
        i = np.append(i, [[values[j][1]]], axis=0)
        m_system = np.append(m_system, [row2[0]], axis=0)

    # Return a least-squares solution
    return inv(np.transpose(m_system) @ m_system) @ np.transpose(m_system) @ i
예제 #3
0
def track_plot(targets):
    # Initialize the start time, the targets, and the initial stokes vector
    time = Time("2015-09-13")
    step = np.arange(0, 1, 1 / 86400)
    stokes = [[0], [1], [0], [0]]
    hwp_angles = [0, 22.5]

    derotator = cmm.DiattenuatorRetarder()
    m3 = cmm.DiattenuatorRetarder()
    sys_mm = MuellerMat.SystemMuellerMatrix(
        [cmm.WollastonPrism(), derotator,
         cmm.HWP(), m3,
         cmm.Rotator()])

    # Put in M3 - use astropy for altitude - diattenuating rotator - as a perfect mirror with an angle
    # "perfect" - no retardance and no diattenuation
    # Derotator - diattenuating retarder at a given parallactic angle
    # Check diattenuating retarder form with goldstein and witzel
    # Can calculate coefficients from material parameters - Fresnel reflection - index of refraction
    # Fresnel coefficients - how to get the r values and possibly retardance

    # use hour angle and dec to find the parallactic angle
    # find the altitude given an hour angle and a target

    for hwp in hwp_angles:
        angle_plot = []
        time_plot = []
        sys_mm.master_property_dict['HalfwaveRetarder']['theta'] = hwp

        for j in range(len(targets)):
            wollaston_data = []
            target = FixedTarget.from_name(targets[j])

            # Calculate the parallactic angles and the altitudes
            angles = np.degrees((keck.parallactic_angle(time + step,
                                                        target)).to_value())
            altitudes = (keck.altaz(time + step, target)).alt.to_value()

            # Calculate the Wollaston beams and parallactic angle as time passes
            for pa, alt in zip(angles, altitudes):
                sys_mm.master_property_dict['Rotator']['pa'] = pa
                m3.properties['theta'] = alt
                sys_mm.master_property_dict['WollastonPrism']['beam'] = 'o'
                I1 = sys_mm.evaluate() @ stokes
                sys_mm.master_property_dict['WollastonPrism']['beam'] = 'e'
                I2 = sys_mm.evaluate() @ stokes
                wollaston_data.append(np.asscalar(I1[0] - I2[0]))

            angle_plot.append(np.array([angles, wollaston_data]).T)
            time_plot.append(
                np.array([((time + step).to_datetime()), wollaston_data]).T)

        # Plot the angle data points
        for k in range(len(targets)):
            x, y = angle_plot[k].T
            plt.scatter(x, y, s=1, label=targets[k])
        plt.title(
            'Difference between Wollaston prism beams over parallactic angle with HWP at %.1f degrees'
            % hwp)
        plt.ylabel(
            'Difference between $\mathdefault{I^+}$ and $\mathdefault{I^-}$')
        plt.xlabel('Parallactic angle (deg)')
        plt.legend(loc="upper left")
        plt.show()

        # Plot the time data points
        for k in range(len(targets)):
            x, y = time_plot[k].T
            plt.scatter(x, y, s=1, label=targets[k])
        plt.title(
            'Difference between Wollaston prism beams over time with HWP at %.1f degrees'
            % hwp)
        plt.ylabel(
            'Difference between $\mathdefault{I^+}$ and $\mathdefault{I^-}$')
        plt.xlabel('Time (hour of day)')
        plt.legend(loc="upper left")
        ax = plt.gca()
        ax.xaxis_date()
        ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M'))
        ax.set_xlim(datetime.date(2015, 9, 13), datetime.date(2015, 9, 14))
        plt.show()
예제 #4
0
from pyMuellerMat import MuellerMat

import numpy as np
from numpy.linalg import inv
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit

# Initialize the telescope's latitude
keck = np.radians(19.8260)

# Initialize the finalized system Mueller Matrix
derotator = cmm.DiattenuatorRetarder()
derotator.name = 'derotator'
m3 = cmm.DiattenuatorRetarder()
m3.name = 'm3'
master_sys_mm = MuellerMat.SystemMuellerMatrix([cmm.WollastonPrism(), derotator, cmm.HWP(), m3, cmm.Rotator()])

# Initialize the standards and convert to degrees
# http://www.ukirt.hawaii.edu/instruments/irpol/irpol_stds.html
# HDE 279652: RA 04 14 50.2, dec +37 35 54, P = 0.61
# HDE 279658: RA 04 13 47.3, dec +37 09 32, P = 1.42
# HDE 283637: RA 04 22 53.3, dec +27 30 18, P = 1.57
ra = np.array([[4, 14, 50.2], [4, 13, 47.3], [4, 22, 53.3]])
dec = np.array([[37, 35, 54], [37, 9, 32], [27, 30, 18]])
rad = np.radians(15 * (ra[:, 0] + ra[:, 1] / 60 + ra[:, 2] / 3600))
decd = np.radians(dec[:, 0] + dec[:, 1] / 60 + dec[:, 2] / 3600)
p = np.array([0.0061, 0.0142, 0.0157])

# matplotlib formatting
plt.rcParams['font.family'] = 'Times New Roman'
plt.rcParams['font.size'] = 22