def run(noNeurons):
            runtime = 1000.0

            import numpy as np
            import pyNN.hardware.spikey as pynn
            pynn.setup()

            neurons = pynn.Population(noNeurons, pynn.IF_facets_hardware1)
            neurons.record()
            stim = pynn.Population(10, pynn.SpikeSourcePoisson, {
                'rate': 20.0,
                'duration': runtime
            })
            prj = pynn.Projection(stim, neurons, pynn.AllToAllConnector())
            prj.setWeights(pynn.maxExcWeight())

            pynn.run(runtime)
            spikes = neurons.getSpikes([])
            # for neuron in np.unique(spikes[:,0]):
            # print 'neuron', int(neuron), 'has', len(spikes[spikes[:,0] ==
            # neuron]), 'spikes'
            noSpikes = len(spikes)
            lost, sent = pynn.getInputSpikes()
            pynn.end()

            print 'no neurons / spikes in / lost / out:', noNeurons + 1, sent, lost, noSpikes

            return noSpikes
예제 #2
0
def test():
    '''mapping of bio index to hardware index should work for networks
    where not all neurons are recorded'''
    pynn.setup()

    if mappingOffset > 0:
        dummy = pynn.Population(mappingOffset, pynn.IF_facets_hardware1)

    neuronList = []
    for i in range(noNeurons):
        neuronList.append(pynn.Population(1, pynn.IF_facets_hardware1))
        neuronList[-1].record()
        dummy = pynn.Population(1, pynn.IF_facets_hardware1)

    stim = pynn.Population(1, pynn.SpikeSourcePoisson)
    for neuron in neuronList:
        pynn.Projection(stim, neuron,
                        pynn.AllToAllConnector(weights=pynn.minExcWeight()))

    pynn.run(1000.0)
    pynn.end()

    f = open('spikeyconfig.out')
    for line in f:
        for i in range(mappingOffset + 2 * noNeurons):
            if line.find('w ' + str(192 + i)) >= 0:
                weight = int(line.split(' ')[256 + 2 - 1])
                print 192 + i, weight
                assert (weight == shouldPatternWeights[i]
                        ), 'results do not fit expectation'
    f.close()
예제 #3
0
def maxSpikesIn(runtime):
    '''Maximum number of spikes that can be sent:
    Should be limited by memory size on FPGA board (256MB => 256x1024x1024x8/32x3 approx. 200e6 spikes).'''

    rate = 10.0
    weight = 1.0

    poissonParam = {'start': 0, 'duration': runtime, 'rate': rate}

    pynn.setup()

    stim = pynn.Population(256, pynn.SpikeSourcePoisson, poissonParam)
    neuron = pynn.Population(192, pynn.IF_facets_hardware1)
    prj = pynn.Projection(stim,
                          neuron,
                          pynn.AllToAllConnector(weights=pynn.minInhWeight() *
                                                 weight),
                          target='inhibitory')

    neuron.record()

    pynn.run(runtime)
    spikes = neuron.getSpikes()
    lost, sent = pynn.getInputSpikes()

    print 'spikes in / out', sent, len(spikes)

    pynn.end()
예제 #4
0
def test_poisson():
    """Test with Poisson source."""

    import pyNN.hardware.spikey as pynn

    duration = 1000.0  # ms
    rate = 5000.0  # 1/s
    poissonParam = {'start': 0, 'duration': duration, 'rate': rate}
    limLost = 1.0  # %

    pynn.setup()

    stim = pynn.Population(1, pynn.SpikeSourcePoisson, poissonParam)
    neuron = pynn.Population(1, pynn.IF_facets_hardware1)
    pynn.Projection(stim,
                    neuron,
                    method=pynn.AllToAllConnector(weights=0),
                    target='inhibitory')
    neuron.record()

    pynn.run(duration)
    lost, sent = pynn.getInputSpikes()
    print 'Number of input spikes (lost, sent, %lost)', lost, sent, float(
        lost) / sent * 1e2

    assert float(lost) / sent * 1e2 < limLost, 'Too many spikes lost!'

    pynn.end()
예제 #5
0
def test_spikey5_allneurons():
    '''
    Tests mapping and firing of all 384 neurons.
    '''
    runtime = 1000.0
    stimRate = 10.0
    weight = 7

    pynn.setup()

    neurons = pynn.Population(384, pynn.IF_facets_hardware1)
    stim = pynn.Population(10, pynn.SpikeSourcePoisson, {
        'start': 0,
        'duration': runtime,
        'rate': stimRate
    })

    prj = pynn.Projection(
        stim,
        neurons,
        method=pynn.AllToAllConnector(weights=pynn.minExcWeight() * weight),
        target='excitatory')

    pynn.run(runtime)

    spikes = neurons.getSpikes()
    print 'spikes from', len(np.unique(spikes)), 'different neurons'
    # TODO: check for spikes from all neurons

    pynn.end()
예제 #6
0
def test_regular():
    """Maximum rate without packing:
    Each second clock cycle a minimal loaded (filled with 1 spikes) spike packet."""

    import numpy as np
    import pyNN.hardware.spikey as pynn
    import time

    np.random.seed(int(time.time()))
    lineDriverNo = np.random.random_integers(0, 255)
    print 'Using line driver number', lineDriverNo

    duration = 1000.0  # ms
    h = 1e3 / 5000.0  # 0.2 ms

    pynn.setup()

    stim = pynn.Population(256, pynn.SpikeSourceArray)
    stim[lineDriverNo].set_parameters(
        spike_times=np.arange(0, duration + h / 2.0, h))
    neuron = pynn.Population(1, pynn.IF_facets_hardware1)
    pynn.Projection(stim,
                    neuron,
                    method=pynn.AllToAllConnector(weights=0),
                    target='inhibitory')
    neuron.record()

    pynn.run(duration)
    lost, sent = pynn.getInputSpikes()
    print 'Number of input spikes (lost, sent)', lost, sent
    assert lost == 0, 'There should not be any spikes lost!'

    pynn.end()
예제 #7
0
def test_regular_packed():
    """Maximum rate with packing:
    Each clock cycle a full (filled with 3 spikes) spike packet."""

    import numpy as np
    import pyNN.hardware.spikey as pynn

    duration = 1000.0  # ms
    h = 1e3 / 5000.0 / 2.0  # 0.1 ms
    spikeTimes = np.arange(0, duration + h / 2.0, h)

    pynn.setup()

    stim = pynn.Population(256, pynn.SpikeSourceArray)
    # spikes have to be distributed over blocks of line drivers for efficient
    # packing
    stim[0].set_parameters(spike_times=spikeTimes)
    stim[64].set_parameters(spike_times=spikeTimes)
    stim[128].set_parameters(spike_times=spikeTimes)
    neuron = pynn.Population(1, pynn.IF_facets_hardware1)
    pynn.Projection(stim,
                    neuron,
                    method=pynn.AllToAllConnector(weights=0),
                    target='inhibitory')
    neuron.record()

    pynn.run(duration)
    lost, sent = pynn.getInputSpikes()
    print 'Number of input spikes (lost, sent)', lost, sent
    assert lost == 0, 'There should not be any spikes lost!'

    pynn.end()
예제 #8
0
def maxRuntime(runtime):
    '''Maximum runtime:
    Limited by wrap around of counter (after approx. 6600s).
    Can be extended to infinitly long runtimes by considering wrap around.
    Subtract/Add offset to in/out spike times for each wrap around.'''

    rate = 1.0
    weight = 1.0

    poissonParam = {'start': 0, 'duration': runtime, 'rate': rate}

    pynn.setup()

    stim = pynn.Population(1, pynn.SpikeSourcePoisson, poissonParam)
    neuron = pynn.Population(1, pynn.IF_facets_hardware1)
    prj = pynn.Projection(stim,
                          neuron,
                          pynn.AllToAllConnector(weights=pynn.minInhWeight() *
                                                 weight),
                          target='inhibitory')

    neuron.record()

    pynn.run(runtime)
    spikes = neuron.getSpikes()
    lost, sent = pynn.getInputSpikes()

    print 'spikes in / out', sent, len(spikes)

    pynn.end()
예제 #9
0
def testRegularMaxPacked():
    '''Maximum rate with packing:

    Each clock cycle a full (filled with 3 spikes) spike packet.'''

    import numpy as np
    import pyNN.hardware.spikey as pynn

    duration = 10000.0  # ms
    h = 1e3 / 5000.0 / 2.0  # 10kHz for each of 3 sources = 30kHz
    spikeTimes = np.arange(0, duration + h / 2.0, h)

    pynn.setup()

    stim = pynn.Population(256, pynn.SpikeSourceArray)
    stim[0].set_parameters(spike_times=spikeTimes)
    stim[63].set_parameters(spike_times=spikeTimes)
    stim[127].set_parameters(spike_times=spikeTimes)
    neuron = pynn.Population(1, pynn.IF_facets_hardware1)
    pynn.Projection(stim,
                    neuron,
                    method=pynn.AllToAllConnector(weights=0),
                    target='inhibitory')
    neuron.record()

    pynn.run(duration)
    print 'no out spikes:', len(neuron.getSpikes())
    lost, sent = pynn.getInputSpikes()
    print 'no in spikes (lost, sent)', lost, sent
    assert lost == 0, 'there should not be any spikes lost!'

    pynn.end()
def run(lowThreshold):
    runtime = 1000.0
    pynn.setup()

    # set STDP params for low threshold  -> fails when vcthigh-vctlow < 0.04
    if lowThreshold:
        pynn.hardware.hwa.setSTDPParams(0.0, default.tpcsec,
                                        default.tpcorperiod, 1.0, 1.0, 1.0,
                                        0.98, 2.5)
    else:
        pynn.hardware.hwa.setSTDPParams(0.0, default.tpcsec,
                                        default.tpcorperiod, 1.0, 1.0, 1.0,
                                        0.85, 2.5)

    neuron = pynn.Population(1, pynn.IF_facets_hardware1)
    spikeArray = pynn.Population(1, pynn.SpikeSourceArray)

    stdp_model = pynn.STDPMechanism(
        timing_dependence=pynn.SpikePairRule(),
        weight_dependence=pynn.AdditiveWeightDependence())

    prj = pynn.Projection(
        spikeArray,
        neuron,
        method=pynn.AllToAllConnector(weights=pynn.minExcWeight() * 0),
        target='excitatory',
        synapse_dynamics=pynn.SynapseDynamics(slow=stdp_model))

    pynn.run(runtime)
    pynn.end()
예제 #11
0
 def withDummyNeurons(mappingOffset, vrest):
     pynn.setup()
     if mappingOffset > 0:
         pynn.Population(mappingOffset, pynn.IF_facets_hardware1)
     pynn.Population(1, pynn.IF_facets_hardware1, vrest)
     pynn.run(1000.0)
     vout = copy.deepcopy(pynn.hardware.hwa.vouts[1, 2:4])
     pynn.end()
     return vout
예제 #12
0
 def build(rateIn):
     global neurons, stim
     poissonParams = {'start': 0, 'duration': runtime, 'rate': rateIn}
     stim = pynn.Population(32, pynn.SpikeSourcePoisson, poissonParams)
     neurons = pynn.Population(numNeurons, pynn.IF_facets_hardware1)
     pynn.Projection(stim,
                     neurons,
                     pynn.AllToAllConnector(weights=pynn.minExcWeight() *
                                            5.0),
                     target='excitatory')
     neurons.record()
def run_network(mappingOffset=0, neuronPermutation=[], noNeurons=-1):
    pynn.setup(mappingOffset=mappingOffset,
               neuronPermutation=neuronPermutation)
    if noNeurons == -1:
        noNeurons = 384
        if pynn.getChipVersion() == 4:
            noNeurons = 192
    a = pynn.Population(noNeurons, pynn.IF_facets_hardware1)
    b = pynn.Population(10, pynn.SpikeSourcePoisson)
    prj = pynn.Projection(b, a, method=pynn.AllToAllConnector())
    pynn.run(1.0)
예제 #14
0
def compareSpikesToMembrane(duration):
    """
    Tests the precise timing of digital spikes and spikes extracted from the membrane potential.
    The neuron is stimulated with Poisson spike sources.
    """
    np.random.seed(int(time.time()))
    neuronNo = np.random.random_integers(0, 191)
    print 'Using neuron number', neuronNo

    poissonParams = {'start': 100.0, 'duration': duration -
                     100.0, 'rate': 30.0}  # offset of 100 ms to get all spikes
    weightExc = 4  # digital hardware value
    weightInh = 15  # digital hardware value
    freqLimit = 1.0  # 1/s
    meanLimit = 0.2  # ms
    stdLimit = 0.2  # ms

    import pyNN.hardware.spikey as pynn

    pynn.setup(mappingOffset=neuronNo)

    stimExc = pynn.Population(64, pynn.SpikeSourcePoisson, poissonParams)
    stimInh = pynn.Population(192, pynn.SpikeSourcePoisson, poissonParams)
    neuron = pynn.Population(1, pynn.IF_facets_hardware1)
    prj = pynn.Projection(stimExc, neuron, pynn.AllToAllConnector(
        weights=weightExc * pynn.minExcWeight()), target='excitatory')
    prj = pynn.Projection(stimInh, neuron, pynn.AllToAllConnector(
        weights=weightInh * pynn.minInhWeight()), target='inhibitory')

    neuron.record()
    pynn.record_v(neuron[0], '')

    pynn.run(duration)

    spikes = neuron.getSpikes()[:, 1]
    membrane = pynn.membraneOutput
    memTime = pynn.timeMembraneOutput
    spikesMem, deriv, thresh = spikesFromMem(memTime, membrane)

    pynn.end()

    #plot(memTime, membrane, spikes, spikesMem, deriv, thresh)

    print 'Spikes and spikes on membrane:', len(spikes), '/', len(spikesMem)
    assert len(spikes) / duration * 1e3 >= freqLimit, 'Too less spikes.'
    assert len(spikes) == len(spikesMem), 'Spikes do not match membrane.'
    spikesDiff = spikesMem - spikes
    spikesDiffMean = np.mean(spikesDiff)
    spikesDiffStd = np.std(spikesDiff)
    print 'Offset between spikes and membrane:', spikesDiffMean, '+-', spikesDiffStd
    assert spikesDiffMean < meanLimit, 'Spike and membrane have too large offset.'
    assert spikesDiffStd < stdLimit, 'Time axes of spikes and membrane are different.'
예제 #15
0
 def withMappingOffset(mappingOffset, vrest):
     pynn.setup(mappingOffset=mappingOffset)
     pynn.Population(1, pynn.IF_facets_hardware1, vrest)
     pynn.run(1000.0)
     vout = copy.deepcopy(pynn.hardware.hwa.vouts[1, 2:4])
     pynn.end()
     return vout
예제 #16
0
    def getMem(self, voltageRest, mappingOffset, calibOutputPins,
               calibNeuronMems):
        import pyNN.hardware.spikey as pynn
        pynn.setup(useUsbAdc=True,
                   avoidSpikes=True,
                   mappingOffset=mappingOffset,
                   calibTauMem=False,
                   calibOutputPins=calibOutputPins,
                   calibNeuronMems=calibNeuronMems)

        neuron = pynn.Population(1, pynn.IF_facets_hardware1,
                                 self.neuronParams)
        #neuronDummy = pynn.Population(1, pynn.IF_facets_hardware1, self.neuronParams)
        neuron.set({'v_rest': voltageRest})
        #neuronDummy.set({'v_rest': self.voltageRange[0]})
        neuron.record()
        pynn.record_v(neuron[0], '')

        pynn.run(self.runtime)

        mem = pynn.membraneOutput
        spikes = neuron.getSpikes()

        pynn.end()

        self.assertTrue(
            (float(len(spikes)) / self.runtime * 1e3) <= self.limFreq,
            'there should not be any (too much) spikes')
        return mem.mean()
예제 #17
0
def run(mappingOffset):
    """
    Measures firing rate of one neuron (determined by mappingOffset) in dependence on value of g_leak.
    If linear fit to these firing rates does not show a significantly large slope,
    g_leak is assumed to be not set correctly.
    """
    pynn.setup(mappingOffset=mappingOffset,
               calibTauMem=False,
               calibSynDrivers=False,
               calibVthresh=False)
    # set v_rest over v_reset to get neuron firing
    neuron = pynn.Population(1, pynn.IF_facets_hardware1, {
        'v_rest':
        pynn.IF_facets_hardware1.default_parameters['v_thresh'] + 10.0
    })
    neuron.record()

    rateList = []
    for gLeak in gLeakRange:
        neuron.set({'g_leak': gLeak / default.iLeak_base})
        pynn.hardware.hwa._neuronsChanged = True
        pynn.run(runtime)
        rateList.append(
            [gLeak, float(len(neuron.getSpikes())) / runtime * 1e3])

    pynn.end()

    rateList = np.array(rateList)
    pol = np.polyfit(rateList[:, 0], rateList[:, 1], 1)  # linear fit
    print 'fitted polynom:', pol
    assert pol[0] > slopeMin, 'rate does not change with g_leak'
예제 #18
0
        def getMemLoop():
            result = []

            pynn.setup(useUsbAdc=True)
            neuron = pynn.Population(noNeurons, pynn.IF_facets_hardware1)

            for j in range(noNeurons):
                if j % 2 == 0:
                    neuron[j].set_parameters(v_rest=vRestEven)
                else:
                    neuron[j].set_parameters(v_rest=vRestOdd)

            neuron.record()

            for i in range(noNeurons):
                pynn.record_v(neuron[i], '')

                pynn.run(runtime)

                mem = pynn.membraneOutput
                spikes = neuron.getSpikes()

                shutil.copy(spikeyconfigFilename,
                            spikeyconfigFilename + extListNo[i])
                self.assertTrue(
                    (float(len(spikes)) / runtime * 1e3) <= limFreq,
                    'there should not be any (too much) spikes')
                result.append([mem.mean(), mem.std()])

            pynn.end()

            return result
예제 #19
0
def maxSpikesOut(runtime):
    '''Maximum number of spikes that can be received:
    Should be limited by memory size on FPGA board (128MB approx. 100e6 spikes, other half for ADC).'''

    neuronParams = {
        'v_reset': -80.0,  # mV
        'e_rev_I': -80.0,  # mV
        'v_rest': -45.0,  # mV / rest above threshold
        'v_thresh': -55.0,  # mV
        'g_leak': 20.0,  # nS / without Scherzer calib approx. tau_m = 2ms
    }

    pynn.setup()

    neuron = pynn.Population(192, pynn.IF_facets_hardware1, neuronParams)
    neuron.record()

    pynn.run(runtime)

    spikes = neuron.getSpikes()[:, 1]
    lost, sent = pynn.getInputSpikes()

    print 'spikes in / out', sent, len(spikes)

    pynn.end()
예제 #20
0
def test_noSpikesBug():
    import numpy as np
    import pyNN.hardware.spikey as pynn

    duration = 10 * 1000.0  # ms
    neuronParams = {
        'v_reset': -80.0,  # mV
        'e_rev_I': -80.0,  # mV
        'v_rest': -45.0,  # mV / rest above threshold
        'v_thresh': -55.0,  # mV
        'g_leak': 20.0,  # nS / without Scherzer calib approx. tau_m = 2ms
    }
    noTrials = 100
    failCount = 0
    for i in range(noTrials):
        pynn.setup()
        neuron = pynn.Population(1, pynn.IF_facets_hardware1, neuronParams)
        neuron.record()
        pynn.run(duration)
        spikes = neuron.getSpikes()[:, 1]
        pynn.end()  # comment this out and everything is fine

        if len(spikes) == 0:
            failCount += 1

    assert failCount == 0, str(
        float(failCount) / noTrials * 1e2) + ' % of runs did not have spikes'
예제 #21
0
def test_empty_exp():
    """
    Initialize hardware and create one neuron.
    """

    pynn.setup()
    pynn.Population(1, pynn.IF_facets_hardware1)
    pynn.run(1000.0)
    pynn.end()
예제 #22
0
def emulation(doesWork):
    numberSynapses = 10
    runtime = 1000.0
    weights = range(0, numberSynapses * numberSynapses)

    pynn.setup()
    pre = pynn.Population(numberSynapses, pynn.SpikeSourcePoisson)
    post = pynn.Population(numberSynapses, pynn.IF_facets_hardware1)
    if doesWork:
        conn = pynn.Projection(pre, post, method=pynn.AllToAllConnector())
        conn.setWeights(weights)
    else:
        conn = pynn.Projection(pre,
                               post,
                               method=pynn.AllToAllConnector(weights=weights))

    pynn.run(runtime)

    pynn.end()
예제 #23
0
def emulate():
    # pynn.setup(useUsbAdc=True)
    pynn.setup()
    stimI = pynn.Population(40, pynn.SpikeSourcePoisson, {
        'start': 0,
        'duration': runtime,
        'rate': rate
    })
    stimE = pynn.Population(20, pynn.SpikeSourcePoisson, {
        'start': 0,
        'duration': runtime,
        'rate': rate
    })
    neuron = pynn.Population(192, pynn.IF_facets_hardware1)
    prjI = pynn.Projection(stimI,
                           neuron,
                           pynn.AllToAllConnector(weights=weight *
                                                  pynn.minInhWeight()),
                           target='inhibitory')
    prjE = pynn.Projection(stimE,
                           neuron,
                           pynn.AllToAllConnector(weights=weight *
                                                  pynn.minExcWeight()),
                           target='excitatory')
    stimI.record()
    stimE.record()
    neuron.record()
    pynn.record_v(neuron[0], '')

    pynn.run(runtime)
    spikesInI = stimI.getSpikes()
    spikesInE = stimE.getSpikes()
    spikes = neuron.getSpikes()
    mem = pynn.membraneOutput

    print 'spikes out', len(spikes)
    print 'spikes in', len(spikesInI), len(spikesInE)
    print 'mem data points', len(mem)

    pynn.end()
예제 #24
0
def run(withSTDP):
    runtime = 1000.0

    pynn.setup()
    stim = pynn.Population(1, pynn.SpikeSourcePoisson, {
                           'start': 0, 'duration': runtime, 'rate': 100.0})
    neuron = pynn.Population(1, pynn.IF_facets_hardware1)

    if withSTDP:
        stdp_model = pynn.STDPMechanism(timing_dependence=pynn.SpikePairRule(),
                                        weight_dependence=pynn.AdditiveWeightDependence())
        pynn.Projection(stim, neuron,
                        method=pynn.AllToAllConnector(
                            weights=pynn.maxExcWeight()),
                        target='excitatory',
                        synapse_dynamics=pynn.SynapseDynamics(slow=stdp_model))
    else:
        pynn.Projection(stim, neuron,
                        method=pynn.AllToAllConnector(
                            weights=pynn.maxExcWeight()),
                        target='excitatory')

    pynn.run(runtime)
    pynn.end()
예제 #25
0
def emulation(seed, connType=0, returnValue=None):
    numberNeurons = 192
    noInputs = 15

    pynn.setup()

    rngPrj = pynn.random.NumpyRNG(seed=seed,
                                  parallel_safe=True)  # this may not work?!
    neurons = pynn.Population(numberNeurons, pynn.IF_facets_hardware1)
    connector = None
    if connType == 0:
        connector = pynn.FixedNumberPreConnector(noInputs,
                                                 weights=pynn.minExcWeight())
    elif connType == 1:
        connector = pynn.FixedNumberPostConnector(noInputs,
                                                  weights=pynn.minExcWeight())
    elif connType == 2:
        connector = pynn.FixedProbabilityConnector(float(noInputs) /
                                                   numberNeurons,
                                                   weights=pynn.minExcWeight())
    else:
        assert False, 'invalid connector type'

    prj = pynn.Projection(neurons,
                          neurons,
                          method=connector,
                          target='inhibitory',
                          rng=rngPrj)

    connList = []
    for conn in prj.connections():
        connList.append(conn)

    assert len(connList) > 0, 'no connections'
    assert len(connList) < numberNeurons * \
        (numberNeurons - 1), 'all-to-all connection'

    pynn.run(1.0)

    pynn.end()

    if returnValue != None:
        returnValue = connList
    else:
        return connList
예제 #26
0
# define weights in digital hardware values
# --> these should be tuned first to obtain synfire chain behavior!
weightStimExcExc = 12 * pynn.minExcWeight()  # 12
weightStimExcInh = 12 * pynn.minExcWeight()  # 12
weightExcExc = 13 * pynn.minExcWeight()  # 8
weightExcInh = 14 * pynn.minExcWeight()  # 10
weightInhExc = 9 * pynn.minInhWeight()  # 7

# kick starter input pulse(s)
#stimSpikes = np.array([100.0])

# to have several kick starter pulses, use (don't forget to reduce to first entry for closed chain):
stimSpikes = np.array([100.0, 200.0, 300.0])

stimExc = pynn.Population(popSize['exc'], pynn.SpikeSourceArray,
                          {'spike_times': stimSpikes})

# create neuron populations
popCollector = {'exc': [], 'inh': []}
for synType in ['exc', 'inh']:
    for popIndex in range(noPops):
        pop = pynn.Population(popSize[synType], pynn.IF_facets_hardware1,
                              neuronParams)
        pop.record()
        popCollector[synType].append(pop)

# connect stimulus
pynn.Projection(stimExc,
                popCollector['exc'][0],
                pynn.FixedProbabilityConnector(p_connect=probExcExc,
                                               weights=weightStimExcExc),
예제 #27
0
    def runTest(self):
        import numpy as np

        column = 4
        row = 4
        n = 20  # number of spike pairs
        deltaTList = [-1.0, 1.0]  # ms
        deltaTLimit = 0.3  # allowed deviation
        delay = 2.9  # ms (between stimulus and post)
        # at beginning in ms (should be larger than max deltaT)
        experimentOffset = 100.0
        deltaTPairs = 100.0  # time between pre-post-pairs in ms

        noStimulators = 3
        weightStimulator = 15  # weight for stimulator neurons
        weightMeasure = 0  # weight for measured neuron
        procCorrOffset = 100.0  # time after experiment until correlations are processed in ms

        for deltaT in deltaTList:
            stimulus = np.arange(experimentOffset,
                                 (n - 0.5) * deltaTPairs + experimentOffset,
                                 deltaTPairs)
            self.assertTrue(len(stimulus) == n)
            stimulusMeasure = stimulus + delay - deltaT

            import pyNN.hardware.spikey as pynn
            import hwconfig_default_s1v2 as default

            pynn.setup()

            if column > 0:
                pynn.Population(column, pynn.IF_facets_hardware1)
            # stimulated neuron
            neuron = pynn.Population(1, pynn.IF_facets_hardware1)

            spikeSourceStim = None
            spikeSourceMeasure = None
            # stimulators above measured synapse
            if row < noStimulators:
                if row > 0:
                    dummy = pynn.Population(row, pynn.SpikeSourceArray)
                spikeSourceMeasure = pynn.Population(
                    1, pynn.SpikeSourceArray, {'spike_times': stimulusMeasure})

            spikeSourceStim = pynn.Population(noStimulators,
                                              pynn.SpikeSourceArray,
                                              {'spike_times': stimulus})

            # stimulators below measured synapse
            if row >= noStimulators:
                if row > noStimulators:
                    dummy = pynn.Population(row - noStimulators,
                                            pynn.SpikeSourceArray)
                spikeSourceMeasure = pynn.Population(
                    1, pynn.SpikeSourceArray, {'spike_times': stimulusMeasure})

            # connect and record
            stdp_model = pynn.STDPMechanism(
                timing_dependence=pynn.SpikePairRule(),
                weight_dependence=pynn.AdditiveWeightDependence())
            pynn.Projection(
                spikeSourceStim,
                neuron,
                method=pynn.AllToAllConnector(weights=pynn.minExcWeight() *
                                              weightStimulator),
                target='excitatory')
            prj = pynn.Projection(
                spikeSourceMeasure,
                neuron,
                method=pynn.AllToAllConnector(weights=pynn.minExcWeight() *
                                              weightMeasure),
                target='excitatory',
                synapse_dynamics=pynn.SynapseDynamics(slow=stdp_model))
            neuron.record()

            #######
            # RUN #
            #######
            # correlation flags:
            # 0: no weight change
            # 1: causal weight change
            # 2: anti-causal weight change
            pynn.hardware.hwa.setLUT(
                [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                [2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

            lastInputSpike = np.max(np.concatenate(
                (stimulus, stimulusMeasure)))
            runtime = lastInputSpike + procCorrOffset
            pynn.hardware.hwa.autoSTDPFrequency = runtime
            print 'runtime: ' + str(runtime) + '; last input spike: ' + str(
                lastInputSpike) + '; STDP readout: ' + str(runtime)
            pynn.run(runtime)

            # get flag and spikes
            corrFlag = (
                np.array(prj.getWeightsHW(readHW=True, format='list')) /
                pynn.minExcWeight())[0]
            spikes = neuron.getSpikes()[:, 1]
            print 'stimulus:', stimulus
            print 'measure:', stimulusMeasure
            print 'post:', spikes
            self.assertTrue(
                len(stimulusMeasure) == len(spikes), 'No proper spiking!')
            print 'correlation flag: ' + str(corrFlag)
            print 'deltaT (is / should / limit):', np.mean(
                spikes - stimulusMeasure), '/', deltaT, '/', deltaTLimit
            self.assertTrue(
                abs(np.mean(spikes - stimulusMeasure) - deltaT) <= deltaTLimit,
                'No precise spiking!')
            if deltaT > 0:  # causal
                self.assertTrue(corrFlag == 1, 'Wrong correlation flag!')
            else:  # anti-causal
                self.assertTrue(corrFlag == 2, 'Wrong correlation flag!')

            pynn.end()
예제 #28
0
    def runTest(self):
        with_figure = False
        import numpy
        import pyNN.hardware.spikey as pynn
        if with_figure:
            import pylab

        # some test parameters
        neuron_param_even = {
            'g_leak': 1.0,  # nS
            'tau_syn_E': 5.0,  # ms
            'tau_syn_I': 5.0,  # ms
            'v_reset': -100.0,  # mV
            'e_rev_I': -100.0,  # mV,
            'v_rest': -65.0,  # mV
            'v_thresh': -62.0  # mV
        }
        neuron_param_uneven = {
            'g_leak': 1.0,  # nS
            'tau_syn_E': 5.0,  # ms
            'tau_syn_I': 5.0,  # ms
            'v_reset': -100.0,  # mV
            'e_rev_I': -100.0,  # mV,
            'v_rest': -65.0,  # mV
            'v_thresh': 0.0  # mV
        }
        stim_offset = 100.0  # ms
        stim_isi = 500.0  # ms
        stim_num = 10  # Number of external input spikes
        stim_weight = 8.0  # in units of pyn.minExcWeight
        stim_pop_size = 10  # size of stimulating population
        duration = stim_offset + ((stim_num + 1) * stim_isi)

        # neuron order: {0, 2, ..., 190, 1, 3, ..., 191, 192, 193, ... 343}
        neuron_order = range(0, 191, 2) + range(1, 192, 2) + range(192, 384, 1)
        if with_figure:
            pynn.setup(neuronPermutation=neuron_order, useUsbAdc=True)
        else:
            pynn.setup(neuronPermutation=neuron_order)

        # create the population with an even hardware neuron index
        even_population = pynn.Population(96, pynn.IF_facets_hardware1,
                                          neuron_param_even)
        # create the population with an uneven hardware neuron index
        uneven_population = pynn.Population(96, pynn.IF_facets_hardware1,
                                            neuron_param_uneven)
        if with_figure:
            pynn.record_v(even_population[0], '')

        # create the external stimulus
        stim_times = numpy.arange(stim_offset, stim_num * stim_isi, stim_isi)
        stim_pop = pynn.Population(stim_pop_size, pynn.SpikeSourceArray,
                                   {'spike_times': stim_times})

        # connect the external simulus
        stim_con = pynn.AllToAllConnector(weights=stim_weight *
                                          pynn.minExcWeight())
        stim_prj_even = pynn.Projection(stim_pop, even_population, stim_con)
        stim_prj_uneven = pynn.Projection(stim_pop, uneven_population,
                                          stim_con)

        # record spikes of all involved neurons
        even_population.record()
        uneven_population.record()

        # run the emulation
        pynn.run(duration)

        # get the spike data
        pre_swap_spikes_even = even_population.getSpikes()
        pre_swap_spikes_uneven = uneven_population.getSpikes()
        if with_figure:
            plotVoltageAndSpikes(pylab, pynn.timeMembraneOutput,
                                 pynn.membraneOutput, pre_swap_spikes_even,
                                 pre_swap_spikes_uneven)

        # swap the configurations
        pynn.set(even_population[0], pynn.IF_facets_hardware1,
                 {'v_thresh': 0.0})
        pynn.set(uneven_population[0], pynn.IF_facets_hardware1,
                 {'v_thresh': -62.0})

        # run the emulation
        pynn.run(duration)

        # get the spike data
        pst_swap_spikes_even = even_population.getSpikes()
        pst_swap_spikes_uneven = uneven_population.getSpikes()
        if with_figure:
            plotVoltageAndSpikes(pylab, pynn.timeMembraneOutput,
                                 pynn.membraneOutput, pst_swap_spikes_even,
                                 pst_swap_spikes_uneven)

        pre_spikes_count_even = float(len(pre_swap_spikes_even[:, 0]))
        pre_spikes_count_uneven = float(len(pre_swap_spikes_uneven[:, 0]))
        pst_spikes_count_even = float(len(pst_swap_spikes_even[:, 0]))
        pst_spikes_count_uneven = float(len(pst_swap_spikes_uneven[:, 0]))
        # let's see what we've got
        assert (pre_spikes_count_even > 0)
        assert (pst_spikes_count_uneven > 0)
        assert (pre_spikes_count_uneven / pre_spikes_count_even < 0.01)
        assert (pst_spikes_count_even / pst_spikes_count_uneven < 0.01)
        assert (pre_spikes_count_uneven / pst_spikes_count_uneven < 0.01)
        assert (pst_spikes_count_even / pre_spikes_count_even < 0.01)
예제 #29
0
    def runTest(self):
        with_figure = False
        import numpy
        import pyNN.hardware.spikey as pynn
        if with_figure:
            import pylab

        # some test parameters
        neuron_param = {
            'g_leak': 1.0,  # nS
            'tau_syn_E': 5.0,  # ms
            'tau_syn_I': 5.0,  # ms
            'v_reset': -100.0,  # mV
            'e_rev_I': -100.0,  # mV,
            'v_rest': -65.0,  # mV
            'v_thresh': -62.0  # mV
        }
        stim_offset = 100.0  # ms
        stim_isi = 500.0  # ms
        stim_num = 10  # Number of external input spikes
        stim_weight = 8.0  # in units of pyn.minExcWeight
        stim_pop_size = 10  # size of stimulating population
        duration = stim_offset + ((stim_num + 1) * stim_isi)

        # neuron order: {0, 2, ..., 190, 1, 3, ..., 191, 192, 193, .., 383}
        neuron_order = range(0, 191, 2) + range(1, 192, 2) + range(192, 384, 1)
        if with_figure:
            pynn.setup(neuronPermutation=neuron_order, useUsbAdc=True)
        else:
            pynn.setup(neuronPermutation=neuron_order)

        # create first population with an even hardware neuron index
        fst_population = pynn.Population(48, pynn.IF_facets_hardware1,
                                         neuron_param)
        # create second population with an even hardware neuron index
        snd_population = pynn.Population(48, pynn.IF_facets_hardware1,
                                         neuron_param)
        if with_figure:
            pynn.record_v(fst_population[0], '')

        # create the external stimulus
        stim_times = numpy.arange(stim_offset, stim_num * stim_isi, stim_isi)
        stim_pop = pynn.Population(stim_pop_size, pynn.SpikeSourceArray,
                                   {'spike_times': stim_times})

        # connect the external simulus
        stim_con = pynn.AllToAllConnector(weights=stim_weight *
                                          pynn.minExcWeight())
        stim_prj_fst = pynn.Projection(stim_pop, fst_population, stim_con)
        stim_prj_snd = pynn.Projection(stim_pop, snd_population, stim_con)

        # record spikes of all involved neurons
        fst_population.record()
        snd_population.record()

        # run the emulation
        pynn.run(duration)

        # get the spike data
        pre_change_spikes_fst = fst_population.getSpikes()
        pre_change_spikes_snd = snd_population.getSpikes()
        if with_figure:
            plotVoltageAndSpikes(pylab,
                                 pynn.timeMembraneOutput,
                                 pynn.membraneOutput,
                                 pre_change_spikes_fst,
                                 pre_change_spikes_snd,
                                 nrn_idx_lim=[0, 96])

        # change the configuration for the first group
        # desired behaviour: change the configuration for all even neurons
        # "set" should be stronger than "previous setting in even/uneven group"
        pynn.set(fst_population[0], pynn.IF_facets_hardware1,
                 {'v_thresh': 0.0})

        # run the emulation
        pynn.run(duration)

        # get the spike data
        lidx_change_spikes_fst = fst_population.getSpikes()
        lidx_change_spikes_snd = snd_population.getSpikes()
        if with_figure:
            plotVoltageAndSpikes(pylab,
                                 pynn.timeMembraneOutput,
                                 pynn.membraneOutput,
                                 lidx_change_spikes_fst,
                                 lidx_change_spikes_snd,
                                 nrn_idx_lim=[0, 96])

        pre_spikes_count_fst = float(len(pre_change_spikes_fst[:, 0]))
        pre_spikes_count_snd = float(len(pre_change_spikes_snd[:, 0]))
        lidx_spikes_count_fst = float(len(lidx_change_spikes_fst[:, 0]))
        lidx_spikes_count_snd = float(len(lidx_change_spikes_snd[:, 0]))
        # let's see what we've got
        assert (pre_spikes_count_fst > 0)
        assert (pre_spikes_count_snd > 0)
        assert (lidx_spikes_count_fst / pre_spikes_count_fst < 0.01)
        assert (lidx_spikes_count_snd / pre_spikes_count_snd < 0.01)
예제 #30
0
# for plotting without X-server
import matplotlib as mpl
mpl.use('Agg')

import pyNN.hardware.spikey as pynn
import numpy as np

pynn.setup()

# set resting potential over spiking threshold
runtime = 1000.0  #ms
popSize = 192
weight = 7.0 * pynn.minExcWeight()
neuronParams = {'v_rest': -40.0}

neurons = pynn.Population(popSize, pynn.IF_facets_hardware1, neuronParams)
pynn.Projection(neurons,
                neurons,
                pynn.FixedNumberPreConnector(15, weights=weight),
                target='inhibitory')
neurons.record()

pynn.run(runtime)

spikes = neurons.getSpikes()

pynn.end()

# visualize
print 'mean firing rate:', round(len(spikes) / runtime / popSize * 1000.0,
                                 1), '1/s'